Advertisement

Journal of Materials Science

, Volume 43, Issue 10, pp 3713–3716 | Cite as

The local structure of gadolinium vanado-tellurite glasses

  • S. RadaEmail author
  • E. Culea
  • V. Rus
  • M. Pica
  • M. Culea
Article

Abstract

In this work we report on a vibrational spectroscopic, X-ray diffraction, and density measurement study of the structural properties of the ternary xGd2O3(100 − x)[7TeO2·3V2O5] systems for various x values up to 70 mol%. Structural changes, as recognized by analyzing band shapes of X-ray diffraction and IR spectra, revealed that Gd2O3 causes a higher extent of network polymerization as far as x ≤ 40 mol%, while for x between 40 and 50 mol% showed a drastic structural modification which lead to the apparition of the GdVO4 crystalline phase.

Keywords

TeO2 Gd2O3 Vanadium Pentoxide Vanadium Atom Tellurite Glass 

References

  1. 1.
    Gaman VI, Peznikov VA, Fedyainova NI, Vyssh UZV (1972) Zaved Fiz 2:57Google Scholar
  2. 2.
    Sidkey MA, El Mallawany R, Nakhla RI, Abd El-Moneim A (1997) J Non-Cryst Solid 215:75CrossRefGoogle Scholar
  3. 3.
    Rolli R, Gatterer K, Wachtler M, Bettinelli M, Speghini A, Ajo D (2001) Spectrochim Acta Part A 57:2009. doi: https://doi.org/10.1016/S1386-1425(01)00474-7 CrossRefGoogle Scholar
  4. 4.
    Turky G, Dawy M (2002) Mater Chem Phys 77:48. doi: https://doi.org/10.1016/S0254-0584(01)00574-0 CrossRefGoogle Scholar
  5. 5.
    Kumar MP, Sankarappa T, Kumar S (2007) J Alloys Compd. doi: https://doi.org/10.1016/j.jallcom.2007.09.132 CrossRefGoogle Scholar
  6. 6.
    Sekiya T, Mochida N, Ogawa S (1994) J Non-Cryst Solids 176:105. doi: https://doi.org/10.1016/0022-3093(94)90067-1 CrossRefGoogle Scholar
  7. 7.
    Shaltout I, Tang Y, Braunstein R, Abu-Elazm AM (1995) J Phys Chem Solids 56:141. doi: https://doi.org/10.1016/0022-3697(94)00150-2 CrossRefGoogle Scholar
  8. 8.
    Mendialdua J, Casanova R, Barbaux Y (1995) J Electron Spectrosc Relat Phenom 71:249. doi: https://doi.org/10.1016/0368-2048(94)02291-7 CrossRefGoogle Scholar
  9. 9.
    Miyata H, Fujii K, Ono T, Kubokawa Y, Ohno T, Hatayama F (1987) J Chem Soc Faraday Trans 83:675CrossRefGoogle Scholar
  10. 10.
    Culea E, Nicula Al, Bratu I (1984) Phys Stat Sol 83:K15. doi: https://doi.org/10.1002/pssa.2210830152 CrossRefGoogle Scholar
  11. 11.
    Dimitrov V (1987) J Solid State Chem 66:256. doi: https://doi.org/10.1016/0022-4596(87)90195-2 CrossRefGoogle Scholar
  12. 12.
    Khattak GD, Tabet N, Wenger LE (2005) Phys Rev B 72:104202. doi: https://doi.org/10.1103/PhysRevB.72.104203 CrossRefGoogle Scholar
  13. 13.
    de Waal D, Hutter C (1994) Mater Res Bull 29:843. doi: https://doi.org/10.1016/0025-5408(94)90004-3 CrossRefGoogle Scholar
  14. 14.
    Manara D, Grandjean A, Pinet O, Dussossoy JL, Neuville DR (2007) J Non-Cryst Solid 353:12CrossRefGoogle Scholar
  15. 15.
    Eraiah B (2006) Bull Mater Sci 29(4):375. doi: https://doi.org/10.1007/BF02704138 CrossRefGoogle Scholar
  16. 16.
    Ganguli M, Rao KJ (1999) J Solid State Chem 145:65. doi: https://doi.org/10.1006/jssc.1999.8221 CrossRefGoogle Scholar
  17. 17.
    Fayon F, Bessada C, Coutures JP, Massiot D (1999) Inorg Chem 38:5212. doi: https://doi.org/10.1021/ic990375p CrossRefGoogle Scholar
  18. 18.
    Abid M, Et-labirou M, Taibi M (2003) Mater Sci Eng B 97:20. doi: https://doi.org/10.1016/S0921-5107(02)00390-2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Technical University of Cluj-NapocaCluj-NapocaRomania
  2. 2.Physics DepartmentTechnical University of Cluj-NapocaCluj-NapocaRomania
  3. 3.Faculty of PhysicsBabes-Bolyai University of Cluj-NapocaCluj-NapocaRomania

Personalised recommendations