Journal of Materials Science

, Volume 43, Issue 10, pp 3704–3712 | Cite as

Probing the structure of nanograined CuO powders

  • Ana E. Bianchi
  • Tomás S. Plivelic
  • Graciela Punte
  • Iris L. Torriani


The microstructural properties of polycrystalline CuO powders and their evolution during controlled high energetic ball milling (HEBM) were studied using conventional X-ray diffraction (XRD) techniques and in situ temperature-dependent small and wide angle scattering (SAXS–WAXS) synchrotron radiation experiments. Volume weighted average grain size, unit cell expansion, oxygen deficiency, and microstrain values as a function of milling time were obtained from XRD. SAXS data revealed different nanostructures for samples synthesized by one-step solid-state reaction (SSR) or HEBM-treated powders. The latter presented the characteristics of a multilayered nanoscale solid system with surface fractal behavior. Correlation of the XRD microstructural parameters and the power law exponent of the SAXS curves as a function of temperature and milling time provided a coherent picture of the structure of HEBM-treated powders. The overall structural information presented in this article may shed some light on the macroscopic physical properties of CuO nanostructures.


Isothermal Treatment Surface Fractal Dimension Unit Cell Expansion WAXS Experiment Surface Fractal Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank E. Cabanillas for providing EDAX data and S.J. Stewart for SSR sample supply and helpful discussions. This work was supported by Capes-SeTCIP, CNPq, LNLS, CLAF, CONICET, and UNLP. G.P. is member of CONICET. A.E. Bianchi acknowledges a CAPES grant and a UNLP research fellowship.


  1. 1.
    Gleiter H (2000) Acta Mater 48:1. doi: 10.1016/S1359-6454(99)00285-2 CrossRefGoogle Scholar
  2. 2.
    Lang XY, Zheng WT, Jiang Q (2006) Phys Rev B 73:224444. doi: 10.1103/PhysRevB.73.224444 CrossRefGoogle Scholar
  3. 3.
    Nobis T, Kaidashev EM, Rahm A, Lorenz M, Grundmann M (2004) Phys Rev Lett 93:103903. doi: 10.1103/PhysRevLett.93.103903 CrossRefGoogle Scholar
  4. 4.
    Wang N, Palumbo G, Wang ZR, Erb U, Aust KT (1993) Scripta Metall Mater 28:253. doi: 10.1016/0956-716X(93)90572-A CrossRefGoogle Scholar
  5. 5.
    Romanov AE (2004) In: Zehetbauer M, Valiev RZ (eds) Nanomaterials by severe plastic deformation. Wiley–VCH Verlag, GmbH & Co, p 213Google Scholar
  6. 6.
    Gomez-Garcia D, Devincre B, Kubin LP (2006) Phys Rev Lett 96:125503. doi: 10.1103/PhysRevLett.96.125503 CrossRefGoogle Scholar
  7. 7.
    Rybchenko SI, Fujishiro Y, Takagi H, Awano M (2005) Phys Rev B 72:054424. doi: 10.1103/PhysRevB.72.054424 CrossRefGoogle Scholar
  8. 8.
    Brahma P, Dutta S, Pal M, Chakravorty D (2006) J Appl Phys 100:044302. doi: 10.1063/1.2227669 CrossRefGoogle Scholar
  9. 9.
    Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D, Nogués J (2003) Nature 423:850. doi: 10.1038/nature01687 CrossRefGoogle Scholar
  10. 10.
    Åsbrink S, Norrby LJ (1970) Acta Crystallogr, Sect B: Struct Crystallogr Cryst Chem 26:8. doi: 10.1107/S0567740870001838 CrossRefGoogle Scholar
  11. 11.
    Koo HJ, Whangbo MH (2003) Inorg Chem 42:1187. doi: 10.1021/ic020576k CrossRefGoogle Scholar
  12. 12.
    Yamada H, Zheng XG, Soejima Y, Kawaminami M (2004) Phys Rev B 69:104104. doi: 10.1103/PhysRevB.69.104104 CrossRefGoogle Scholar
  13. 13.
    Zheng XG, Xu CN, Tomokiyo Y, Tanaka E, Yamada H, Soejima Y (2000) Phys Rev Lett 85:5170. doi: 10.1103/PhysRevLett.85.5170 CrossRefGoogle Scholar
  14. 14.
    Zheng XG, Yamada H, Scanderbeg DJ, Maple MB, Xu CN (2003) Phys Rev B 67:214516. doi: 10.1103/PhysRevB.67.214516 CrossRefGoogle Scholar
  15. 15.
    Zhang J, Liu J, Peng Q, Wang X, Li Y (2006) Chem Mater 18:867. doi: 10.1021/cm052256f CrossRefGoogle Scholar
  16. 16.
    Liu Y, Liao L, Li J, Pan C (2007) J Phys Chem C 111:5050. doi: 10.1021/jp069043d CrossRefGoogle Scholar
  17. 17.
    Filippetti A, Fiorentini V (2005) Phys Rev Lett 95:086405. doi: 10.1103/PhysRevLett.95.086405 CrossRefGoogle Scholar
  18. 18.
    Wu D, Zhang Q, Tao M (2006) Phys Rev B 73:235206. doi: 10.1103/PhysRevB.73.235206 CrossRefGoogle Scholar
  19. 19.
    Koch CC (1993) Nanostruct Mater 2:109. doi: 10.1016/0965-9773(93)90016-5 CrossRefGoogle Scholar
  20. 20.
    Suryanarayana C (2001) Prog Mater Sci 46:1. doi: 10.1016/S0079-6425(99)00010-9 CrossRefGoogle Scholar
  21. 21.
    Borzi RA, Stewart SJ, Mercader RC, Punte G, García FJ (2001) J Magn Magn Mater 226:1513. doi: 10.1016/S0304-8853(00)00943-4 CrossRefGoogle Scholar
  22. 22.
    Stewart SJ, Multigner M, Marco JF, Berry JF, Hernando A, González JM (2004) Solid State Comm 130:247. doi: 10.1016/j.ssc.2004.01.032 CrossRefGoogle Scholar
  23. 23.
    Junciel LD (2003) MSc Thesis. Universidad Nacional de La Plata, La PlataGoogle Scholar
  24. 24.
    Guinier A, Fournet G (1955) Small angle scattering of X-rays. Wiley, New YorkGoogle Scholar
  25. 25.
    Glatter O, Kratky O (1982) Small-angle X-ray scattering. Academic Press, New YorkGoogle Scholar
  26. 26.
    Debye P, Bueche AM (1949) J Appl Phys 20:518. doi: 10.1063/1.1698419 CrossRefGoogle Scholar
  27. 27.
    Debye P, Anderson HR Jr, Brumberger H (1957) J Appl Phys 28:679. doi: 10.1063/1.1722830 CrossRefGoogle Scholar
  28. 28.
    Schmidt PW (1991) J Appl Cryst 24:414. doi: 10.1107/S0021889891003400 CrossRefGoogle Scholar
  29. 29.
    Rodriguez-Carvajal J, Fernandez-Diaz MT, Martinez JL (1991) J Phys: Condens Matter 3:3215. doi: 10.1088/0953-8984/3/19/002 CrossRefGoogle Scholar
  30. 30.
    Kellermann G, Vicentin F, Tamura E, Rocha M, Tolentino H, Barbosa A, Craievich A, Torriani I (1997) J Appl Cryst 30:880. doi: 10.1107/S0021889897001829 CrossRefGoogle Scholar
  31. 31.
    Kellermann G, Craievich AF, Newenschwander R, Plivelic TS (2003) Nucl Instr Meth B 199:112. doi: 10.1016/S0168-583X(02)01422-2 CrossRefGoogle Scholar
  32. 32.
    Oliveira CLP (2003) TRAT1D—Computer program for SAXS data treatment. LNLS technical manual MT 01/2003, CampinasGoogle Scholar
  33. 33.
    Young RA (1993) The Rietveld method. Oxford University PressGoogle Scholar
  34. 34.
    Zhang F, Chan SW, Spanier JE, Apak E, Jin Q, Robinson RD, Herman IP (2002) Appl Phys Lett 80:127CrossRefGoogle Scholar
  35. 35.
    Li G, Boerio-Goates J, Woodfield BF, Li L (2004) Appl Phys Lett 85:2059CrossRefGoogle Scholar
  36. 36.
    Palkar VR, Ayyub P, Chattopadhyay S, Multan M (1996) Phys Rev B 53:2167. doi: 10.1103/PhysRevB.53.2167 CrossRefGoogle Scholar
  37. 37.
    Ayyub P, Palkar VR, Chattopadhyay S, Multan M (1995) Phys Rev B 51:6135. doi: 10.1103/PhysRevB.51.6135 CrossRefGoogle Scholar
  38. 38.
    Nazarov AA, Romanov AE, Valiev RZ (1993) Acta Metall Mater 41:1033. doi: 10.1016/0956-7151(93)90152-I CrossRefGoogle Scholar
  39. 39.
    Semenyuk AV, Svergun DI (1991) J Appl Cryst 24:485. doi: 10.1107/S0021889891001280 CrossRefGoogle Scholar
  40. 40.
    Rawers J, Cook D (1999) Nanostruct Mater 11:331. doi: 10.1016/S0965-9773(99)00049-5 CrossRefGoogle Scholar
  41. 41.
    Minich RW, Schuh CA, Kumar M (2002) Phys Rev B 66:52101. doi: 10.1103/PhysRevB.66.052101 CrossRefGoogle Scholar
  42. 42.
    Tanaka M, Kayama A, Ito Y, Kato R (1998) J Mater Sci 33:3351. doi: 10.1023/A:1013241531412 CrossRefGoogle Scholar
  43. 43.
    Hisatsune K, Takuma Y, Tanaka Y, Udo K, Kawasaki K (1998) J Mater Sci 33:4783. doi: 10.1023/A:1004409725726 CrossRefGoogle Scholar
  44. 44.
    Groma I, Bakó B (2000) Phys Rev Lett 84:1487. doi: 10.1103/PhysRevLett.84.1487 CrossRefGoogle Scholar
  45. 45.
    Székely F, Groma I, Lendvai J (2000) Phys Rev B 62:3093. doi: 10.1103/PhysRevB.62.3093 CrossRefGoogle Scholar
  46. 46.
    Sturm A, Wiedenmann A, Wollenberger H (1995) Mater Sci Eng B 32:295. doi: 10.1016/0921-5107(95)03020-4 CrossRefGoogle Scholar
  47. 47.
    Tanaka M (1995) J Mater Sci 30:3668. doi: 10.1007/BF00351883 CrossRefGoogle Scholar
  48. 48.
    Tanaka M (1996) J Mater Sci 31:749. doi: 10.1007/BF00367895 CrossRefGoogle Scholar
  49. 49.
    Lebedev V, Didenko V, Lapin A, Konoplev K, Orlova D, Török G, Rétfalvi E (2003) J Appl Cryst 36:629. doi: 10.1107/S0021889803003996 CrossRefGoogle Scholar
  50. 50.
    Streitenberger P, Föster D, Kolbe G, Veit P (1996) Script Mater 34:111. doi: 10.1016/1359-6462(95)00477-7 CrossRefGoogle Scholar
  51. 51.
    Streitenberger P (2000) In: Novak MM (ed) Paradigms of complexity—fractals and structures in the sciences. World Scientific, Singapore, p 135Google Scholar
  52. 52.
    Maksimenko VV, Andreev GB (2001) Physica A 300:339. doi: 10.1016/S0378-4371(01)00326-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ana E. Bianchi
    • 1
  • Tomás S. Plivelic
    • 2
  • Graciela Punte
    • 1
  • Iris L. Torriani
    • 3
  1. 1.LANADI – Departamento de FísicaFacultad de Ciencias Exactas – UNLPLa PlataArgentina
  2. 2.Laboratorio Nacional de Luz SincrotronSao PauloBrazil
  3. 3.Instituto de FísicaUniversidade Estadual de Campinas, Cidade UniversitáriaSao PauloBrazil

Personalised recommendations