Journal of Materials Science

, Volume 43, Issue 13, pp 4399–4410 | Cite as

Damage evolution and energy absorption of E-glass/polypropylene laminates subjected to ballistic impact

  • L. J. Deka
  • S. D. Bartus
  • U. K. VaidyaEmail author
Commonality of Phenomena in Composite Materials


High-velocity transverse impact of laminated fiber reinforced composites is of interest in military, marine and structural applications. The overall objective of this work was to investigate the behavior of laminated thermoplastic composites of varying thicknesses under high-velocity impact from an experimental and modeling viewpoint. In order to analyze this problem, a series of ballistic impact tests have been performed on plain weave E-glass/polypropylene (E-glass/PP) composites of different thicknesses using 0.30 and 0.50 caliber right-cylinder shaped projectiles. A gas gun with a sabot stripper mechanism was employed to impact the panels. In order to analyze the perforation mechanisms, ballistic limit and damage evaluation, an explicit three-dimensional finite element code LS-DYNA was used. Material model 162, a progressive failure model based on modified Hashin’s criteria, has been assigned to analyze failure of the laminate. The projectile was modeled using Material model 3 (MAT_PLASTIC_KINEMATIC). The laminates and the projectile were meshed using brick elements with single integration points. The impact velocity ranged from 187 to 332 m s−1. Good agreement between the numerical and experimental results was attained in terms of predicting ballistic limit, delamination and energy absorption of E-glass/PP laminate.


Composite Plate Damage Parameter Carbon Fiber Reinforce Plastic Brick Element Continuum Damage Mechanic 



The support provided by Office of Naval Research (ONR) under Dr. Yapa Rajapakse, Project Manager is gratefully acknowledged.


  1. 1.
    Abrate S (1998) Impact on composite structures. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  2. 2.
    Goldsmith W, Dharan CKH, Chang H (1995) Int J Impact Eng 32(1):89Google Scholar
  3. 3.
    Sun CT, Potti SV (1996) Int J Impact Eng 18(3):339. doi: CrossRefGoogle Scholar
  4. 4.
    Morye SS, Hine PJ, Duckett RA, Carr DJ, Ward IM (2000) Compos Sci Technol 60:2631. doi: CrossRefGoogle Scholar
  5. 5.
    Department of Defense Test Method Standard V50 Ballistic Test for Armor, MIL-STD-662F, December 18, 1997Google Scholar
  6. 6.
    Mines RAW, Roach AM, Jones N (1999) Int J Impact Eng 22:561. doi: CrossRefGoogle Scholar
  7. 7.
    Lee SWR, Sun CT (1993) Compos Sci Technol 49:369. doi: CrossRefGoogle Scholar
  8. 8.
    Zhu G, Goldsmith W, Dharan CKH (1992) Int J Solids Struct 29(4):399. doi: CrossRefGoogle Scholar
  9. 9.
    Zhu G, Goldsmith W, Dharan CKH (1992) Int J Solids Struct 29(4):421. doi: CrossRefGoogle Scholar
  10. 10.
    Okafor AC, Otieno AW, Dutta A, Rao VS (2001) Compos Struct 54:289. doi: CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Wen HM (2001) Compos Sci Technol 61:1163. doi: CrossRefGoogle Scholar
  13. 13.
    Abrate A (1994) Appl Mech Rev 47:517CrossRefGoogle Scholar
  14. 14.
    Choi HY, Chang FK (1990) Impact damage threshold of laminated composite in failure criteria and analysis in dynamic response. AMD, 107, ASME Applied Mechanics Division, November, Dallas, TX, p 31Google Scholar
  15. 15.
    Davies GAO, Zhang X (1999) Int J Impact Eng 16:149. doi: CrossRefGoogle Scholar
  16. 16.
    Richardson MOW, Wisheart MJ (1996) Composites 27(A):1123CrossRefGoogle Scholar
  17. 17.
    Cantwell WJ, Morton J (1990) J Comp Sci Tech 38:119CrossRefGoogle Scholar
  18. 18.
    Mahfuz H, Zhu Y, Haque A, Abutalib A, Vaidya U, Jeelani S, Gama B, Gillespie J, Fink B (2000) Int J Impact Eng. 24:203. doi: CrossRefGoogle Scholar
  19. 19.
    DeLuca E, Prifti J, Betheney W, Chou SC (1998) J Comp Sci Tech 58:1453. doi: CrossRefGoogle Scholar
  20. 20.
    Ladeveze P, LeDantec E (1992) Compos Sci Technol 43:257. doi: CrossRefGoogle Scholar
  21. 21.
    Allix O, Ladeveze P (1992) Compos Struct 22:235CrossRefGoogle Scholar
  22. 22.
    Johnson AF, Pickett AK, Rozycki P (2001) J Comp Sci Tech 61:2183CrossRefGoogle Scholar
  23. 23.
    Matzenmillar A, Lubliner J, Taylor RL (1995) Mech Mater 20:125CrossRefGoogle Scholar
  24. 24.
    Williams KV, Vaziri R (2001) Comput Struct 79:997. doi: CrossRefGoogle Scholar
  25. 25.
    Yen C-F (2002) Proceedings of the 7th international LS-DYNA users conference, Detroit, Michigan, p 15Google Scholar
  26. 26.
    Chan S, Fawaz Z, Behdinan K, Amid R (2007) Compos Struct 77:466. doi: CrossRefGoogle Scholar
  27. 27.
    Brown K, Brooks R, Warrior N (2005) Proceedings of the 5th European LS-DYNA users conference, Birmingham, UK, May 25–26, 2005Google Scholar
  28. 28.
    Xiao JR, Gama BA, Gillespie JW (2007) Compos Struct 77:182. doi: CrossRefGoogle Scholar
  29. 29.
    U.S. Department of Justice. Ballistic resistance of personal body armor. NIJ standard-0101.04, Office of Science and Technology, Washington, DC, June 2001Google Scholar
  30. 30.
    Altair HyperMesh. Altair Engineering, Inc.1820 E. Big Beaver Troy, MI, 1998Google Scholar
  31. 31.
    Engineering Technology Associates, Inc., Troy, MI, 2003Google Scholar
  32. 32.
    Livermore Software Technology Corporation, Livermore, 7374 Las Positas Road, CA, 2003Google Scholar
  33. 33.
    Hashin Z (1980) J Appl Mech 47:329CrossRefGoogle Scholar
  34. 34.
    LS-DYNA Theoretical Manual, version 970. Livermore Software Tech. Corp., May 1998Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Material Science & EngineeringThe University of Alabama at BirminghamBirminghamUSA
  2. 2.Army Research LaboratoryAberdeenUSA

Personalised recommendations