Journal of Materials Science

, Volume 43, Issue 15, pp 5083–5091 | Cite as

Interfacial crystalline behavior in glass-fiber/polypropylene composites modified by block copolymer coupling agents

  • Yin Li
  • Lingxia Chen
  • Xiaodong ZhouEmail author
Interface Science


A kind of di-block copolymer polystyrene-block-poly(γ-methacryloxy-propyltrimethoxysilane) (PS-b-PMPS) with different PS block length and a kind of tri-block copolymer polystyrene-block-poly(n-butylacrylate)-block-poly(γ-methacryloxypropyltrimethoxysilane) (PS-b-PnBA-b-PMPS) with different PnBA block length were synthesized by atom transfer radical polymerization (ATRP), in which PS was a ‘hard’ block and PnBA was a ‘soft’ block. The interfacial crystallization behaviors of glass fiber/polypropylene systems modified with different coupling agents MPS, PS-b-PMPS, and PS-b-PnBA-b-PMPS were investigated on different crystallization conditions. Transcrystallinity could not be induced on non-isothermal crystallization or without maleic anhydride (10%) in polypropylene, but it appeared when glass fibers were treated with common silane coupling agent γ-methacryloxypropyltrimethoxysilane (MPS) and di-block copolymer coupling agent PS-b-PMPS in 135 °C isothermal crystallization without shear and 150 °C isothermal crystallization with shear. However, it disappeared at the interface when the samples were treated with tri-block copolymer coupling agent (PS-b-PnBA-b-PMPS) either under static or shear-induced condition. It might be that the flexible interlayer formed by the flexible block PnBA of PS-b-PnBA-b-PMPS could relax not only the thermal stress resulted from interface temperature gradient arising from sample cooling for crystallization, but also the shear stress induced by fiber/matrix interface shear.


Glass Fiber Atom Transfer Radical Polymerization Atom Transfer Radical Polymerization Maleic Anhydride Isothermal Crystallization 



The authors sincerely acknowledge the support of NSFC (50003003).


  1. 1.
    Van Den Oever M, Peijs T (1998) Compos Part A 29:227CrossRefGoogle Scholar
  2. 2.
    Sako N, Matsuoka T, Sakaguchi K (1998) In: Proceedings of the international conference on fiber reinforced composites, 7th, Newcastle upon Tyne, April 15–17, p 175Google Scholar
  3. 3.
    Thomason JL, Schoolenberg GE (1994) Compos Part A 25:197CrossRefGoogle Scholar
  4. 4.
    Cruz-Silva R, Romero-Garcia J, Vazquez-Rodriguez S, Angulo-Sanchez JL (2007) J Appl Polym Sci 105:2387CrossRefGoogle Scholar
  5. 5.
    Wagner HD, Lustiger A, Marzinsky CN, Mueller RR (1993) Compos Sci Technol 48:181CrossRefGoogle Scholar
  6. 6.
    Yue CY, Quek MY (1994) J Mater Sci 29:2487CrossRefGoogle Scholar
  7. 7.
    Cruz-Silva R, Romero-Garcia J, Angulo-Sanchez JL (2005) J Mater Sci 40:5107CrossRefGoogle Scholar
  8. 8.
    Thomason JL, Van Rooyen AA (1992) J Mater Sci 27:889CrossRefGoogle Scholar
  9. 9.
    Varga J, Karger-Kocsis J (1993) Compos Sci Technol 48:191CrossRefGoogle Scholar
  10. 10.
    Anna Z, Honggan W, Xinsheng Z, Seizo M (2002) Compos Interfac 9:319CrossRefGoogle Scholar
  11. 11.
    Wang H (1996) Master’s degree thesis of East China University of Science and Technology p 15 (in Chinese)Google Scholar
  12. 12.
    Yang W, Gance D (1998) J East China Univ Sci Technol 24:675 (in Chinese)Google Scholar
  13. 13.
    Cai YQ et al (1997) J Appl Polym Sci 65:67CrossRefGoogle Scholar
  14. 14.
    Wang C, Liu CR (1999) Polymer 40:289CrossRefGoogle Scholar
  15. 15.
    Folkes MJ, Hardwick ST (1987) J Mater Sci Lett 6:656CrossRefGoogle Scholar
  16. 16.
    Moon C-K (1994) J Appl Polym Sci 54:73CrossRefGoogle Scholar
  17. 17.
    Huson MG, McGill WJ (1985) J Polym Sci: Poly Phys Ed 23:121Google Scholar
  18. 18.
    Zeng H, Zhang Z (1992) J Mater Eng 1:6 (in Chinese)Google Scholar
  19. 19.
    Lin Z, Zeng H (2004) Chinese Polym Bull 5:56 (in Chinese)Google Scholar
  20. 20.
    Wang K, Guo M, Zhao D, Zhang Q, Du R, Fu Q, Dong X, Han CC (2006) Polymer 47:8374CrossRefGoogle Scholar
  21. 21.
    Tillie MN, Lam TM, Gerard JF (1998) Compos Sci Technol 58(5):659CrossRefGoogle Scholar
  22. 22.
    Pegoretti A, Fidanza M, Migliaresi C, Dibenedetto AT (1998) Compos Part A 29(3):283CrossRefGoogle Scholar
  23. 23.
    Zhou X, Xiong R, Lin Q (2006) J Mater Sci 41:7879CrossRefGoogle Scholar
  24. 24.
    Park R, Jang J (1998) Compos Sci Technol 58:979CrossRefGoogle Scholar
  25. 25.
    Tao J, Guo A, Liu G (1996) Macromolecules 29:1618CrossRefGoogle Scholar
  26. 26.
    Miller B, Muri P, Rebenteld L (1987) Compos Sci Technol 28(1):l7CrossRefGoogle Scholar
  27. 27.
    Cui X, Zhou X, Dai G (2002) Polym Mater Sci Eng 18:138 (in Chinese)Google Scholar
  28. 28.
    Pompe G, Mader E (2000) Compos Sci Technol 60:2159CrossRefGoogle Scholar
  29. 29.
    Zhou X, Dai G, Guo W, Lin Q (2000) J Appl Polym Sci 76:1359CrossRefGoogle Scholar
  30. 30.
    Xanthos M (1988) Polym Eng Sci 28:1392CrossRefGoogle Scholar
  31. 31.
    Constable RC, Amur AM (1991) In: Proceedings of ANTEC, p 1892Google Scholar
  32. 32.
    Chatterjee AM, Price FP, Newman S (1975) J Polym Sci: Polym Phys 13:2391Google Scholar
  33. 33.
    Azzurri F, Alfonso GC (2005) Macromolecules 38:1723CrossRefGoogle Scholar
  34. 34.
    Larin B, Marom G, Avila-Orta CA, Somani RH, Hsiao BS (2005) J Appl Polym Sci 98:1113CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghaiP.R. China

Personalised recommendations