Journal of Materials Science

, Volume 43, Issue 10, pp 3664–3669 | Cite as

MWNTs/PANI composite materials prepared by in-situ chemical oxidative polymerization for supercapacitor electrode

  • Ling-Bin KongEmail author
  • Jing Zhang
  • Jing-Jing An
  • Yong-Chun Luo
  • Long Kang


Multi-walled carbon nanotubes (MWNTs)/polyaniline (PANI) composite materials were prepared by in-situ chemical oxidative polymerization of an aniline solution containing well-dispersed MWNTs. The supercapacitive behaviors of these composite materials were investigated with cyclic voltammetry (CV), charge–discharge tests, and ac impedance spectroscopy, respectively. The composites based on the charge-transfer complex between well-dispersed MWNTs and PANI matrixes show much higher specific capacitance, better thermal stability, lower resistance, and were more promising for applications in supercapacitors than a pure PANI electrode. The highest specific capacitance value of 224 Fg−1 was obtained for the MWNTs/PANI composite materials containing MWNTs of 0.8 wt%. The improvement mechanisms of the capacitance of the composite materials were also discussed in detail.


PANI Specific Capacitance Electrochemical Impedance Spectroscopy Composite Electrode High Specific Capacitance 



The authors acknowledge the financial support by the National Natural Science Foundation of China (No. 50602020) and the National Basic Research Program of China (No. 2007CB216408).


  1. 1.
    Iijima S, Ichihashi T (1993) Nature 363:603. doi: CrossRefGoogle Scholar
  2. 2.
    Niu CM, Sichel EK, Hoch R, Moy D, Tennent H (1997) Appl Phys Lett 70:1480. doi: CrossRefGoogle Scholar
  3. 3.
    Yu MF, Files BS, Arepalli S, Ruoffet S (2000) Phys Rev Lett 84:5552. Medline. doi:10.1103/PhysRevLett.84.5552CrossRefGoogle Scholar
  4. 4.
    Schadler LS, Giannaris SC, Ajayan PM (1998) Appl Phys Letts 73:3842. doi: CrossRefGoogle Scholar
  5. 5.
    Wagner HD, Lourie O, Feldman Y, Tenne R (1998) Appl Phys Lett 72:188. doi: CrossRefGoogle Scholar
  6. 6.
    Qian D, Dickey EC, Andrews R, Rantell T (2000) Appl Phys Letts 76:2868. doi: CrossRefGoogle Scholar
  7. 7.
    Conway BE (1999) Electrochemical supercapacitors. Kluwer Academic/Plenum Publishers, New YorkCrossRefGoogle Scholar
  8. 8.
    Conway BE (1991) J Electrochem Soc 138:1539. doi: CrossRefGoogle Scholar
  9. 9.
    Gupta V, Miura N (2006) J Power Sources 157:616. doi: CrossRefGoogle Scholar
  10. 10.
    Gupta V, Miura N (2006) Electrochim Acta 52:1721. doi: CrossRefGoogle Scholar
  11. 11.
    Skotheim TA, Elsenbaumer RL, Reynolds JR (1997) Handbook of conducting polymers. Marcel Dekker, New YorkGoogle Scholar
  12. 12.
    Konyushenko EN, Stejskal J, Trchova M, Hradil J, Kovarova J, Prokes J, Cieslar M, Hwang JY, Chen KH, Sapurina I (2006) Polymer 47:5715. doi: CrossRefGoogle Scholar
  13. 13.
    Premamoy G, Samir KS, Amit C (1999) Eur Polym J 35:699. doi: CrossRefGoogle Scholar
  14. 14.
    Lefrant S, Baibarac M, Baltog I, Mevellec JY, Godon C Chauvet O (2005) Diam Relat Mater 14:867. doi: CrossRefGoogle Scholar
  15. 15.
    Maser WK, Benito AM, Callejas MA, Seeger T, Martínez MT, Schreiber J, Muszynski J, Chauvet O, Osváth Z, Koós AA, Biró LP (2003) Mater Sci Eng C 23:87. doi: CrossRefGoogle Scholar
  16. 16.
    Zengin H, Zhou W, Jin J, Cserw R, Smith DW Jr, Echegoyen L, Carroll DL, Foulger SH, Ballato J (2002) Adv Mater 14:1480. doi:≤1480::AID-ADMA1480≥3.0.CO;2-O CrossRefGoogle Scholar
  17. 17.
    Zhou Y-K, He B-L, Zhou WJ, Li H-L (2004) J Electrochem Soc 151:A1052. doi: CrossRefGoogle Scholar
  18. 18.
    Li X-H, Wu B, Huang J-E, Zhang J, Liu Z-F, Li H-L (2003) Carbon 41:1670. doi: CrossRefGoogle Scholar
  19. 19.
    Huang J-E, Li X-H, Xu J-C, Li H-L (2003) Carbon 41:2731. doi: CrossRefGoogle Scholar
  20. 20.
    Barraza HJ, Pompeo F, O’Rear EA, Resasco DE (2002) Nano Lett 2:797. doi: CrossRefGoogle Scholar
  21. 21.
    Zhu Z-Z, Wang Z, Li H-L (2008) Appl Surf Sci 254:2934CrossRefGoogle Scholar
  22. 22.
    Sun Y, Wilson SR, Schuster DI (2001) J Am Chem Soc 123:5348. Medline. doi:10.1021/ja0041730CrossRefGoogle Scholar
  23. 23.
    Li Q-W, Yan H, Cheng Y, Zhang J, Liu Z-F (2002) J Mater Chem 12:1179. doi: CrossRefGoogle Scholar
  24. 24.
    Quillard S, Louarn G, Lefrant S, MacDiarmid AG (1994) Phys Rev B 50:12496. doi: CrossRefGoogle Scholar
  25. 25.
    Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M (2001) J Power Sources 101:109. doi: CrossRefGoogle Scholar
  26. 26.
    Burke A (2000) J Power Sources 91:37. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ling-Bin Kong
    • 1
    Email author
  • Jing Zhang
    • 1
  • Jing-Jing An
    • 1
  • Yong-Chun Luo
    • 1
  • Long Kang
    • 1
  1. 1.State Key Laboratory of Gansu Advanced Non-ferrous Metal MaterialsLanzhou University of TechnologyLanzhouP.R. China

Personalised recommendations