Journal of Materials Science

, Volume 43, Issue 10, pp 3664–3669 | Cite as

MWNTs/PANI composite materials prepared by in-situ chemical oxidative polymerization for supercapacitor electrode

  • Ling-Bin Kong
  • Jing Zhang
  • Jing-Jing An
  • Yong-Chun Luo
  • Long Kang
Article

Abstract

Multi-walled carbon nanotubes (MWNTs)/polyaniline (PANI) composite materials were prepared by in-situ chemical oxidative polymerization of an aniline solution containing well-dispersed MWNTs. The supercapacitive behaviors of these composite materials were investigated with cyclic voltammetry (CV), charge–discharge tests, and ac impedance spectroscopy, respectively. The composites based on the charge-transfer complex between well-dispersed MWNTs and PANI matrixes show much higher specific capacitance, better thermal stability, lower resistance, and were more promising for applications in supercapacitors than a pure PANI electrode. The highest specific capacitance value of 224 Fg−1 was obtained for the MWNTs/PANI composite materials containing MWNTs of 0.8 wt%. The improvement mechanisms of the capacitance of the composite materials were also discussed in detail.

Notes

Acknowledgements

The authors acknowledge the financial support by the National Natural Science Foundation of China (No. 50602020) and the National Basic Research Program of China (No. 2007CB216408).

References

  1. 1.
    Iijima S, Ichihashi T (1993) Nature 363:603. doi:10.1038/363603a0 CrossRefGoogle Scholar
  2. 2.
    Niu CM, Sichel EK, Hoch R, Moy D, Tennent H (1997) Appl Phys Lett 70:1480. doi:10.1063/1.118568 CrossRefGoogle Scholar
  3. 3.
    Yu MF, Files BS, Arepalli S, Ruoffet S (2000) Phys Rev Lett 84:5552. Medline. doi:10.1103/PhysRevLett.84.5552Google Scholar
  4. 4.
    Schadler LS, Giannaris SC, Ajayan PM (1998) Appl Phys Letts 73:3842. doi:10.1063/1.122911 CrossRefGoogle Scholar
  5. 5.
    Wagner HD, Lourie O, Feldman Y, Tenne R (1998) Appl Phys Lett 72:188. doi:10.1063/1.120680 CrossRefGoogle Scholar
  6. 6.
    Qian D, Dickey EC, Andrews R, Rantell T (2000) Appl Phys Letts 76:2868. doi:10.1063/1.126500 CrossRefGoogle Scholar
  7. 7.
    Conway BE (1999) Electrochemical supercapacitors. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  8. 8.
    Conway BE (1991) J Electrochem Soc 138:1539. doi:10.1149/1.2085829 CrossRefGoogle Scholar
  9. 9.
    Gupta V, Miura N (2006) J Power Sources 157:616. doi:10.1016/j.jpowsour.2005.07.046 CrossRefGoogle Scholar
  10. 10.
    Gupta V, Miura N (2006) Electrochim Acta 52:1721. doi:10.1016/j.electacta.2006.01.074 CrossRefGoogle Scholar
  11. 11.
    Skotheim TA, Elsenbaumer RL, Reynolds JR (1997) Handbook of conducting polymers. Marcel Dekker, New YorkGoogle Scholar
  12. 12.
    Konyushenko EN, Stejskal J, Trchova M, Hradil J, Kovarova J, Prokes J, Cieslar M, Hwang JY, Chen KH, Sapurina I (2006) Polymer 47:5715. doi:10.1016/j.polymer.2006.05.059 CrossRefGoogle Scholar
  13. 13.
    Premamoy G, Samir KS, Amit C (1999) Eur Polym J 35:699. doi:10.1016/S0014-3057(98)00157-8 CrossRefGoogle Scholar
  14. 14.
    Lefrant S, Baibarac M, Baltog I, Mevellec JY, Godon C Chauvet O (2005) Diam Relat Mater 14:867. doi:10.1016/j.diamond.2004.11.035 CrossRefGoogle Scholar
  15. 15.
    Maser WK, Benito AM, Callejas MA, Seeger T, Martínez MT, Schreiber J, Muszynski J, Chauvet O, Osváth Z, Koós AA, Biró LP (2003) Mater Sci Eng C 23:87. doi:10.1016/S0928-4931(02)00235-7 CrossRefGoogle Scholar
  16. 16.
    Zengin H, Zhou W, Jin J, Cserw R, Smith DW Jr, Echegoyen L, Carroll DL, Foulger SH, Ballato J (2002) Adv Mater 14:1480. doi:10.1002/1521-4095(20021016)14:20≤1480::AID-ADMA1480≥3.0.CO;2-O CrossRefGoogle Scholar
  17. 17.
    Zhou Y-K, He B-L, Zhou WJ, Li H-L (2004) J Electrochem Soc 151:A1052. doi:10.1149/1.1758812 CrossRefGoogle Scholar
  18. 18.
    Li X-H, Wu B, Huang J-E, Zhang J, Liu Z-F, Li H-L (2003) Carbon 41:1670. doi:10.1016/S0008-6223(03)00124-6 CrossRefGoogle Scholar
  19. 19.
    Huang J-E, Li X-H, Xu J-C, Li H-L (2003) Carbon 41:2731. doi:10.1016/S0008-6223(03)00359-2 CrossRefGoogle Scholar
  20. 20.
    Barraza HJ, Pompeo F, O’Rear EA, Resasco DE (2002) Nano Lett 2:797. doi:10.1021/nl0256208 CrossRefGoogle Scholar
  21. 21.
    Zhu Z-Z, Wang Z, Li H-L (2008) Appl Surf Sci 254:2934CrossRefGoogle Scholar
  22. 22.
    Sun Y, Wilson SR, Schuster DI (2001) J Am Chem Soc 123:5348. Medline. doi:10.1021/ja0041730Google Scholar
  23. 23.
    Li Q-W, Yan H, Cheng Y, Zhang J, Liu Z-F (2002) J Mater Chem 12:1179. doi:10.1039/b109763f CrossRefGoogle Scholar
  24. 24.
    Quillard S, Louarn G, Lefrant S, MacDiarmid AG (1994) Phys Rev B 50:12496. doi:10.1103/PhysRevB.50.12496 CrossRefGoogle Scholar
  25. 25.
    Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M (2001) J Power Sources 101:109. doi:10.1016/S0378-7753(01)00707-8 CrossRefGoogle Scholar
  26. 26.
    Burke A (2000) J Power Sources 91:37. doi:10.1016/S0378-7753(00)00485-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ling-Bin Kong
    • 1
  • Jing Zhang
    • 1
  • Jing-Jing An
    • 1
  • Yong-Chun Luo
    • 1
  • Long Kang
    • 1
  1. 1.State Key Laboratory of Gansu Advanced Non-ferrous Metal MaterialsLanzhou University of TechnologyLanzhouP.R. China

Personalised recommendations