Journal of Materials Science

, Volume 43, Issue 19, pp 6556–6561 | Cite as

Characterization of cellular ceramics for high-temperature applications

  • W. AccharEmail author
  • E. G. Ramalho
  • F. B. M. Souza
  • W. L. Torquato
  • V. P. Rodrigues
  • M. D. M. Innocentini


Polymeric sponge replication technique is the most used process to obtain ceramic foams with a cellular structure for filtration applications. This technique is based on an impregnation of a polymeric sponge with ceramic slurry, removal by squeezing, followed by burning out polymer and high temperature sintering. Ceramic filters must present high permeability and strength. However, these parameters are influenced in different ways by the processing method and the consequent cellular structure. In this work the relationship between permeability and strength has been investigated for 10- and 40-ppi (pores per linear inch) Al2O3–ZrO2 filter materials. Characterization included the evaluation of the permeability and strength as well as the microstructural analyses of the fracture surface.


Pressure Drop Cordierite Ceramic Foam Thermal Protection System Permeability Constant 



The authors would like to thank CNPq-CT-Petro for the financial support.


  1. 1.
    Innocentini MDM, Sepulveda P, Ortega FS (2005) In: Scheffler M, Colombo P (eds) Cellular ceramics: structure, manufacturing, properties and applications. Wiley-VCH Verlag GmbH, Weinheim, Germany, p 313Google Scholar
  2. 2.
    Rodrigues VP, Argiona LP, Pileggi RG, Romano RC, Coury JR, Innocentini MDM (2007) Permeability optimization of hot aerosol filters prepared from foaming of ceramic suspensions. In: 10th international conference and exhibition of the European ceramic society, 2007, Berlin-Alemanha. Anais do 10th international conference and exhibition of the European ceramic societyGoogle Scholar
  3. 3.
    Freitas NL, Gonçalves JAS, Innocentini MDM, Coury JR (2006) J Hazard Mater B 316:747. doi: CrossRefGoogle Scholar
  4. 4.
    Innocentini MDM, Silva MG, Menegazzo BA, Pandolfelli VC (2001) J Am Ceram Soc 84(3):645CrossRefGoogle Scholar
  5. 5.
    Gibosn LJ, Ashby MF (1999) Cellular solids, structure and properties, 2nd edn. Cambridge University Press, UKGoogle Scholar
  6. 6.
    Colombo P (2002) Key Eng Mater 1913:206Google Scholar
  7. 7.
    Gomez de Salazar JM, Barrena MI, Morales G, Matesanz L, Merino N (2006) Mater Lett 60:1687. doi: CrossRefGoogle Scholar
  8. 8.
    Montanaro L, Jorand Y, Fantozzi G, Negro A (1998) J Europ Ceram Soc 18:1339. doi: CrossRefGoogle Scholar
  9. 9.
    Zhu X, Jiang D, Tan S (2002) Mater Res Bull 37:541. doi: CrossRefGoogle Scholar
  10. 10.
    Sousa E, Silveira CB, Fey T, Greil P, Hotza D, Oliveira APN (2005) Adv Appl Ceram 104:1. doi: CrossRefGoogle Scholar
  11. 11.
    Romano RCO, Pandolfelli VC (2006) Cerâmica 52:213. doi: CrossRefGoogle Scholar
  12. 12.
    Moreira EA, Innocentini MDM, Coury JR (2004) J Europ Ceram Soc 24:3209. doi: CrossRefGoogle Scholar
  13. 13.
    Innocentini MDM, Salvini VR, Pandolfelli VC (1999) Am Ceram Soc Bull 78:78Google Scholar
  14. 14.
    Scheffler M, Colombo P (2005) Cellular ceramics: structure, manufacturing, properties and applications. Wiley-VCHGoogle Scholar
  15. 15.
    Gibson LJ, Ashby MF (1983) Cellular solids: structure and properties. Cambridge UniversityGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • W. Acchar
    • 1
    • 2
    • 3
    Email author
  • E. G. Ramalho
    • 2
  • F. B. M. Souza
    • 2
  • W. L. Torquato
    • 3
  • V. P. Rodrigues
    • 4
  • M. D. M. Innocentini
    • 4
  1. 1.Department of PhysicsFederal University of Rio Grande do NorteNatalBrazil
  2. 2.Pos-graduation Program of Mechanical EngineeringFederal University of Rio Grande do NorteNatalBrazil
  3. 3.Pos-graduation Program of Science and Materials EngineeringFederal University of Rio Grande do NorteNatalBrazil
  4. 4.Course of Chemical EngineeringUniversity of Ribeirão Preto, UNAERPRibeirão PretoBrazil

Personalised recommendations