Advertisement

Journal of Materials Science

, Volume 43, Issue 15, pp 5076–5082 | Cite as

Field-assisted diffusion bonding and bond characterization of glass to aluminum

  • C. R. Liu
  • J. F. Zhao
  • X. Y. Lu
  • Q. S. MengEmail author
  • Y. P. Zhao
  • Z. A. Munir
Interface Science

Abstract

The bonding of glass wafers to aluminum foils in multi-layer assemblies was investigated by the field-assisted diffusion bonding process. Bonding was effected at temperatures in the range 350–450 °C and with an applied voltage in the range 400–700 V under a pressure of 0.05 MPa. The experimental parameters of voltage and temperature were the main factors in influencing the ionic current leading to the formation of the depleted layer. The peak current in three-layer samples (glass/aluminum/glass) during bonding is twice that for the case of the two-layer samples (aluminum/glass). SEM and EDS analyses showed the presence of transition layers near the glass/aluminum interface, and XRD data demonstrated the phase structure of the glass/aluminum interface. The tensile strength of the bonded material increased markedly with increasing temperature and applied voltage. Fracture occurred in the glass phase near the interface with the aluminum. Finite element analysis showed the residual deformation in three-layer samples to be significantly lower than in two-layer samples. The symmetry in three-layer samples resulted in the absence of strain, an important advantage in MEMS fabrication.

Keywords

Residual Stress Aluminum Foil Transition Layer Bonding Process Equivalent Strain 

Notes

Acknowledgements

The present study was supported by grants (No. 50375105 and No. 50671070) from the National Nature Science Foundation of China. Professors Liu and Meng acknowledge the help of members of Professor Munir’s research group during their sabbatical stay at his laboratory. We would also like to acknowledge the researchers of the Mechanical Research Institute of Chinese Academic of Science for their help with the modeling study. Support of this project to one of us (ZAM) by the US Army Research Office is gratefully acknowledged.

References

  1. 1.
    Wallis G, Pomerantz DI (1969) J Appl Phys 40:3946. doi:  https://doi.org/10.1063/1.1657121 CrossRefGoogle Scholar
  2. 2.
    Shoji S, Kikuchi H, Torigoe H (1998) Sens Actuators A 64:95CrossRefGoogle Scholar
  3. 3.
    Makino E, Mitsuyama T, Shibata T (2000) ibid A 79:251Google Scholar
  4. 4.
    Sasaki G, Fukunaga H, Suga T et al (1997) Mater Chem Phys 51:174Google Scholar
  5. 5.
    Rogers T, Kowal J (1995) Sens Actuators A 46–47:113. doi: https://doi.org/10.1016/0924-4247(94)00872-F CrossRefGoogle Scholar
  6. 6.
    Plaza JA, Esteve J, Lora-Tamayo E (1998) Sens Actuators A 67:181. doi: https://doi.org/10.1016/S0924-4247(97)01739-1 CrossRefGoogle Scholar
  7. 7.
    Weichel S, deReuss R, Bouaidat S et al (2000) Sens Actuators A 82:249. doi: https://doi.org/10.1016/S0924-4247(99)00372-6 CrossRefGoogle Scholar
  8. 8.
    Xing QF, Sasaki G, Fukunaga H (2002) J Mater Sci Mater Electron 13:83CrossRefGoogle Scholar
  9. 9.
    Morsy MA, Ishizaki K, Ikeuchi K et al (1998) Quart J Jpn Weld Soc 16:157CrossRefGoogle Scholar
  10. 10.
    Briand D, Weber P, de Rooij NF (2004) Sens Actuators A 114:543. doi: https://doi.org/10.1016/j.sna.2003.10.070 CrossRefGoogle Scholar
  11. 11.
    Wallis G (1970) J Am Ceram Soc 53:563CrossRefGoogle Scholar
  12. 12.
    Albaugh KB, Rasmussen DH (1992) ibid 75:2644Google Scholar
  13. 13.
    Gossink RG (1978) J Am Ceram Soc 61:539CrossRefGoogle Scholar
  14. 14.
    van Helvoort ATJ, Knowles KM, Fernie JA (2003) J Am Ceram Soc 86:1773CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Beatty CC (1996) Technical digest solid-state sensor and actuator wordshop. Transducer Research Foundation 200:204Google Scholar
  17. 17.
    Sobek D, Senturia SD, Gray ML (1994) Technical digest solid-state sensor and actuator wordshop. Transducer Research Foundation 260:263Google Scholar
  18. 18.
    Harrison DJ, Fluri K, Chiem N (1996) Sens Actuators B 105:109Google Scholar
  19. 19.
    Despont M, Gross H, Arrouy F (1996) Sens Actuators A 55:219. doi: https://doi.org/10.1016/S0924-4247(97)80081-7 CrossRefGoogle Scholar
  20. 20.
    Nimkar ND, Bhavnani SH, Ellis CD (2004) Sens Actuators A 113:212. doi: https://doi.org/10.1016/j.sna.2004.02.028 CrossRefGoogle Scholar
  21. 21.
    Huff MA, Schmidt MA (1992) Technical digest IEEE solid-state sensor and actuator workshop. IEEE 194:197Google Scholar
  22. 22.
    Epstein AH, Senturia SD, Anathasuresh G (1997) Technical digest IEEE solid-state sensor and actuator wordshop. IEEE 753:756Google Scholar
  23. 23.
    Knowles KM, van Helvoort ATJ (2006) Int Mater Rev 51:273CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • C. R. Liu
    • 1
  • J. F. Zhao
    • 2
  • X. Y. Lu
    • 1
  • Q. S. Meng
    • 1
    Email author
  • Y. P. Zhao
    • 3
  • Z. A. Munir
    • 2
  1. 1.Department of Materials Science & EngineeringTaiyuan University of TechnologyTaiyuanChina
  2. 2.Department of Chemical Engineering & Materials ScienceUniversity of CaliforniaDavisUSA
  3. 3.Mechanical Research Institute of the Chinese Academy of ScienceBeijingChina

Personalised recommendations