Journal of Materials Science

, Volume 43, Issue 10, pp 3649–3654 | Cite as

Synthesis of magnetic nanoparticles in bicontinuous microemulsions. Effect of surfactant concentration

  • Ana L. Loo
  • María G. Pineda
  • Henned Saade
  • María E. Treviño
  • Raúl G. LópezEmail author


Precipitation was accomplished at 80 °C for magnetic nanoparticles in bicontinuous microemulsions that were stabilized with different concentrations of a surfactants mixture of dodecyltrimethylammonium bromide/didodecyldimethylammonium bromide (3/2, w/w). These nanoparticles were characterized by X-ray Diffraction, Scanning Transmission Electronic Microscopy (STEM), and Vibrating Sample Magnetometry (VSM), which demonstrated that they were composed of magnetite or a mixture of magnetite-maghemite. The particles were found to have average diameters between 6.9 and 7.9 nm with relatively narrow particle size distribution and showed possible superparamagnetic behavior. In addition, we observed an inverse dependence of particle size on surfactant concentration. Yields obtained in these precipitation reactions were found to be up to three times higher than those typically reported in specialized literature about precipitation of magnetic nanoparticles in reverse microemulsions.


Magnetite Magnetic Nanoparticles Surfactant Concentration Magnetic Particle Scan Transmission Electronic Microscopy 



National Council of Science and Technology (CONACyT) supported this research through grant SEP 2003-CO2-45436. We are grateful to Janet Valdés and Patricia Siller for their technical assistance.


  1. 1.
    Battle X, Labarta A (2002) J Phys D Apply Phys 35:R15CrossRefGoogle Scholar
  2. 2.
    Frenkel J, Dorfman J (1930) Nature 126:274. doi: CrossRefGoogle Scholar
  3. 3.
    Tartaj P, Morales MP, Veintemillas-Verdaguer S, González-Carreño T, Serna CJ (2003) J Phys D Apply Phys 36:R182CrossRefGoogle Scholar
  4. 4.
    Shinkai M (2002) J Biosci Bioeng 94:606. MedlineCrossRefGoogle Scholar
  5. 5.
    Pankhurst QA, Connolly J, Jones SK, Dobson JJ (2003) Phys D Appl Phys 36:R167CrossRefGoogle Scholar
  6. 6.
    Berry CC, Curtis ASG (2003) J Phys D Appl Phys 36:R198. doi: CrossRefGoogle Scholar
  7. 7.
    Gobe M, Kon-No K, Kandori K, Kitahara A (1983) J Colloid Interface Sci 93:293. doi: CrossRefGoogle Scholar
  8. 8.
    Bandow S, Kimura K, Kon-No K, Kitahara A (1987) Jpn J Appl Phys 26:713. doi: CrossRefGoogle Scholar
  9. 9.
    Lee KM, Sorensen CM, Klabunde KJ, Hadjipanayis GC (1992) IEEE Trans Magn 28:3180. doi: CrossRefGoogle Scholar
  10. 10.
    Liz L, López-Quintela MA, Mira J, Rivas J (1994) J Mater Sci 29:3797. doi: CrossRefGoogle Scholar
  11. 11.
    Pillai VK (1995) PhD thesis, University of FloridaGoogle Scholar
  12. 12.
    López-Pérez JA, López-Quintela MA, Mira J, Rivas J (1997) IEEE Trans Magn 33:4359. doi: CrossRefGoogle Scholar
  13. 13.
    Dresco PA, Zaitsev VS, Gambino RJ, Chu B (1999) Langmuir 15:1945. doi: CrossRefGoogle Scholar
  14. 14.
    Lee HS, Lee WC, Furubayashi T (1999) J Appl Phys 85:5231. doi: CrossRefGoogle Scholar
  15. 15.
    Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan W (2001) Langmuir 17:1900. doi: CrossRefGoogle Scholar
  16. 16.
    Liu ZL, Wang X, Yao KL, Du GH, Lu QH, Ding ZH, Tao J, Ning Q, Luo XP, Tian DY, Xi D (2004) J Mater Sci 39:2633. doi: CrossRefGoogle Scholar
  17. 17.
    Lee Y, Lee J, Bae CJ, Park JG, Noh HJ, Park JH, Hyeon T (2005) Adv Funct Mater 15:503. doi: CrossRefGoogle Scholar
  18. 18.
    Koutzarova T, Koulev S, Ghelev C, Paneva D, Nedkov I (2006) Phys Status Solidi C 3:1302. doi: CrossRefGoogle Scholar
  19. 19.
    Osseo-Asare K (1999) In: Kumar P, Mittal KL (eds) Handbook of microemulsion science and technology, 1st edn. Marcel Dekker, Inc., New YorkGoogle Scholar
  20. 20.
    Esquivel J, Facundo IA, Treviño ME, López RG (2007) J Mat Sci 42:9015. doi: CrossRefGoogle Scholar
  21. 21.
    Ezrahi S, Aserin A, Garti N (1999) In: Kumar P, Mittal KL (eds) Handbook of microemulsion science and technology, 1st edn. Marcel Dekker, Inc., New YorkGoogle Scholar
  22. 22.
    Eicke HF, Borkovec M, Gupta BD (1989) J Phys Chem 93:314. doi: CrossRefGoogle Scholar
  23. 23.
    Borkovec M, Eicke HF, Hammerich H, Gupta BD (1988) J Phys Chem 92:206. doi: CrossRefGoogle Scholar
  24. 24.
    Billman JF, Kaler EW (1990) Langmuir 6:611. doi: CrossRefGoogle Scholar
  25. 25.
    Maitra A, Mathew C, Varshney M (1990) J Phys Chem 94:5290. doi: CrossRefGoogle Scholar
  26. 26.
    Sineva AV, Ermolat’ev DS, Pertsov AV (2007) Colloid J 69:89. doi: CrossRefGoogle Scholar
  27. 27.
    Sager WFC (2002) Materie und Material 10:A6/1Google Scholar
  28. 28.
    Collins EA (1997) In: Lovell PA, El-Aasser MS (eds) Emulsion polymerization and emulsion polymers, 1st edn. Wiley, ChichesterGoogle Scholar
  29. 29.
    Kodama RH (1999) J Magn Magn Mater 200:359. doi: CrossRefGoogle Scholar
  30. 30.
    Cornell RM, Schwertmann U (1996) The iron oxides. Structure, properties, reactions, occurrence and uses. VCH, Weinheim, GermanyGoogle Scholar
  31. 31.
    Selim S (1997) US Patent 5695901Google Scholar
  32. 32.
    Lee Y, Lee J, Bae CJ, Park JG, Noh HJ, Park JH, Hyeon T (2005) Adv Funct Mater 15:2036. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ana L. Loo
    • 1
    • 2
  • María G. Pineda
    • 1
  • Henned Saade
    • 1
  • María E. Treviño
    • 1
  • Raúl G. López
    • 1
    Email author
  1. 1.Centro de Investigación en Química AplicadaSaltilloMexico
  2. 2.Facultad de Ciencias QuímicasUniversidad Autónoma de CoahuilaSaltilloMexico

Personalised recommendations