Journal of Materials Science

, Volume 43, Issue 10, pp 3638–3642 | Cite as

Spherical particles of phenolic resin treated with iron oxide

  • Francisco J. dos Santos
  • Miguel JafelicciJr.
  • Cláudio G. dos-SantosEmail author
  • Rosângela A. de Souza
  • Vânya M. D. Pasa


This paper describes the preparation and characterization of phenolic resins’ thermospheres covered by a magnetic phase of iron oxide. The thermospheres were prepared by allowing phenol and formaldehyde to react under dispersion polymerization conditions and the iron oxide phase was incorporated in situ onto the phenolic resin particles by adding concentrated NH3 to FeCl2 in DMSO. This reaction was conducted at 70 °C under nitrogen atmosphere in a controlled temperature vessel, and the modified resin was isolated and dried in vacuo. Both pure and modified resins were characterized by DRX, TG-DTA, and MEV/EDX. The modified particles were attracted by a magnetic field, indicating the fixation of magnetic iron oxide. No diffraction peaks were observed in DRX analysis; thermal analysis (DTA) of both pure and modified resins presented exothermic events between 300 and 680 °C, and 300 and 570 °C, respectively, indicating the microstructure of the resin was modified after the treatment. Thermogravimetric analysis (TGA) of the pure resin registered a 2.0% residue, compared to 8.0% for the modified resin. These residues correspond to about 7.0% of fixed iron oxide. MEV/EDX analyses confirm the modification of the resins by the process of fixing iron oxide.


Magnetite Iron Oxide Dispersion Polymerization Magnetic Iron Oxide Green Rust 



This work was supported by the following Brazillian agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).


  1. 1.
    Gray D, Hoa SV, Tsai SW (2003) In: Composite materials: design and applications. CRC Press, Boca RatonGoogle Scholar
  2. 2.
    Lim SK, Chung KJ, Kim Y-H, Kim CK, Yoon CS (2004) J Colloid Interface Sci 273:517. doi: CrossRefGoogle Scholar
  3. 3.
    Morales MP, Walton SA, Prichard LS, Serna CJ, Dickson DPE, O’Grady K (1998) J Magn Magn Mater 190:357. doi: CrossRefGoogle Scholar
  4. 4.
    La Conte L, Nitin N, Bao G (2005) Mater Today 8(Supp. I):32. doi: CrossRefGoogle Scholar
  5. 5.
    Weitschies W, Kosch O, Mönnikes H, Trahms L (2005) Adv Drug Deliv Rev 57:1210 Medline. doi: CrossRefGoogle Scholar
  6. 6.
    Shlomis MI, Pshenichnikov AF, Morozov KI, Shurubor IY (1990) J Magn Magn Mater 85:40. doi: CrossRefGoogle Scholar
  7. 7.
    Albornos C, Sileo EE, Jacobo SE (2004) Phys B: Condens Matter 354:149. doi: CrossRefGoogle Scholar
  8. 8.
    Pardoe H, Chua-Anusorn W, St. Pierre TG, Dobson J (2001) J Magn Magn Mater 225:41. doi: CrossRefGoogle Scholar
  9. 9.
    Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrence and uses, 2nd edn. Wiley-VCH, WeinheinCrossRefGoogle Scholar
  10. 10.
    Refait P, Génin JMR (1993) Corrosion Sci 34:797. doi: CrossRefGoogle Scholar
  11. 11.
    Brode GL (1985) J Macromol Sci—Chem A22:897CrossRefGoogle Scholar
  12. 12.
    Knop A, Pilato LA (1985) In: Phenolic resins—chemistry, applications and performance. Springer Verlag, Berlin, p 140CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Francisco J. dos Santos
    • 1
  • Miguel JafelicciJr.
    • 1
  • Cláudio G. dos-Santos
    • 2
    Email author
  • Rosângela A. de Souza
    • 3
  • Vânya M. D. Pasa
    • 3
  1. 1.Instituto de QuímicaUNESPAraraquaraBrazil
  2. 2.Departamento de Química, ICEBUFOPOuro PretoBrazil
  3. 3.Departamento de Química, ICEXUFMGBelo HorizonteBrazil

Personalised recommendations