Advertisement

Journal of Materials Science

, Volume 43, Issue 10, pp 3608–3611 | Cite as

Phase developments in Pb(Mg1/2W1/2)O3 and Pb(Zn1/2W1/2)O3 via B-site precursor route

  • Woo-Joon Lee
  • Nam-Kyoung KimEmail author
Article

Abstract

Phase formation stages of MgWO4 and ZnWO4 (precursor compositions for following steps) were investigated by monitoring the reactions of oxide chemicals at various temperatures. Developed phases were examined by using X-ray diffraction (XRD). Successive attempts were also conducted for Pb(Mg1/2W1/2)O3 (PMW) and Pb(Zn1/2W1/2)O3 (PZW) by reacting PbO with the precursor compounds. Stages of phase development in the two compositions were also analyzed. The results are compared with those of another tungsten-containing perovskite Pb(Fe2/3W1/3)O3 (PFW) and its B-site precursor Fe2WO6. After PbO addition to the precursor powders, a perovskite phase formed directly (i.e., without any intermediate phases) in the case of PMW. For PbO + ½ZnWO4, in contrast, the decomposition of ZnWO4 and preferential reaction with PbO resulted in Pb2WO5 and ZnO, instead of the perovskite PZW.

Keywords

Perovskite Perovskite Phase Precursor Powder Constituent Oxide Lead Magnesium 

References

  1. 1.
    Shuvalov LA, Minaeva KA (1963) Sov Phys-Dokl 7(10):906Google Scholar
  2. 2.
    Agranovskaya AI (1960) Bull Acad Sci USSR, Phys Ser 24:1271Google Scholar
  3. 3.
    Isupov VA (1963) Sov Phys-Solid State 5:136Google Scholar
  4. 4.
    Inada M (1977) Jpn Natl Tech Rept 27:95Google Scholar
  5. 5.
    Lejeune M, Boilot JP (1982) Ceram Int 8:99CrossRefGoogle Scholar
  6. 6.
    Swartz SL, Shrout TR (1982) Mater Res Bull 17:1245CrossRefGoogle Scholar
  7. 7.
    Lejeune M, Boilot JP (1983) Ceram Int 9:119CrossRefGoogle Scholar
  8. 8.
    Lejeune M, Boilot JP (1984) Ferroelectrics 54:191CrossRefGoogle Scholar
  9. 9.
    Kim N-K (1997) Mater Lett 32:127CrossRefGoogle Scholar
  10. 10.
    Ananta S, Brydson R, Thomas NW (1999) J Eur Ceram Soc 19:355CrossRefGoogle Scholar
  11. 11.
    Yu Y, Feng C, Li C, Yang Y, Yao W, Yan H (2001) Mater Lett 51:490CrossRefGoogle Scholar
  12. 12.
    Babushkin O, Lindbaeck T, Luc J-C, Leblais J-Y M (1998) J Eur Ceram Soc 18:737CrossRefGoogle Scholar
  13. 13.
    Yonezawa M, Ohno T (1982) Japan-US Study Seminar on Dielectric and Piezoelectric Ceramics, T-8, 1–4 Google Scholar
  14. 14.
    Kassarjian MP, Newnham RE, Biggers JV (1985) Am Ceram Soc Bull 64:1108Google Scholar
  15. 15.
    Fu S-L, Chen G-F (1988) Ferroelectrics 82:119CrossRefGoogle Scholar
  16. 16.
    Lee B-H, Kim N-K, Kim J-J, Cho S-H (1998) Ferroelectrics 211:233CrossRefGoogle Scholar
  17. 17.
    Lu C-H, Shinozaki K, Kato M, Mizutani N (1991) J Mater Sci 26:1009. doi: https://doi.org/10.1007/BF00576779 CrossRefGoogle Scholar
  18. 18.
    Lu C-H, Shinozaki K, Mizutani N (1992) J Am Ceram Soc 75:1303CrossRefGoogle Scholar
  19. 19.
    Park B-O, Kim N-K (1999) Mater Lett 40:246CrossRefGoogle Scholar
  20. 20.
    Park T-K, Kim N-K, Lee C-H, Lee J-Y (2005) Mater Lett 59:588CrossRefGoogle Scholar
  21. 21.
    Ananta S, Thomas NW (1999) J Eur Ceram Soc 19:155CrossRefGoogle Scholar
  22. 22.
    Halliyal A, Kumar U, Newnham RE, Cross LE (1987) Am Ceram Soc Bull 66:671Google Scholar
  23. 23.
    Shrout TR, Halliyal A (1987) Am Ceram Soc Bull 66:704Google Scholar
  24. 24.
    Smith WF (1990) Principles of materials science and engineering, 2nd edn. McGraw-Hill, Singapore, p 37Google Scholar
  25. 25.
    Shannon RD (1976) Acta Crystallogr A 32:751CrossRefGoogle Scholar
  26. 26.
    Kim N-K, Payne DA (1990) J Mater Res 5:2045CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringKyungpook National UniversityDaeguKorea

Personalised recommendations