Advertisement

Journal of Materials Science

, Volume 43, Issue 10, pp 3582–3588 | Cite as

Optical and structural characteristics of Y2O3 thin films synthesized from yttrium acetylacetonate

  • G. Alarcón-FloresEmail author
  • M. Aguilar-Frutis
  • M. García-Hipolito
  • J. Guzmán-Mendoza
  • M. A. Canseco
  • C. Falcony
Article

Abstract

Yttrium oxide thin films are deposited on silicon substrates using the ultrasonic spray pyrolysis technique from the thermal decomposition of a β-diketonate, yttrium acetylacetonate (Y(acac)3). The decomposition of Y(acac)3 was studied by thermogravimetry, differential scanning calorimetry, mass spectrometry, and infrared spectroscopy. It was found that a β-diketone ligand is lost during the initial steps of decomposition of the Y(acac)3. The rest of the complex is then dissociated or degraded partially until Y2O3 is obtained in the final step with the presence of carbon related residues. Then the Y(acac)3 was used to synthesize Y2O3 thin films using the spray pyrolysis technique. The films were deposited on silicon substrates at temperatures in the range of 400–550 °C. The films were characterized by ellipsometry, infrared spectroscopy, atomic force microscopy, and X-ray diffraction. The films presented a low surface roughness with an index of refraction close to 1.8. The crystalline structure of the films depended on the substrate temperature; films deposited at 400 °C were mainly amorphous, but higher deposition temperatures (450–550 °C), resulted in polycrystalline with a cubic crystalline phase.

Keywords

Yttrium Y2O3 Acac Organic Residue Yttrium Oxide 

Notes

Acknowledgements

The authors would like to thank warmly to CONACyT-México and to CGPI-IPN for the financial support through the scientific research projects (Grant Nos. 2005815, 20040278). The technical assistance of B. Esquivel, R. J. Fregoso, M. Guerrero, and A.B. Soto is also acknowledged.

References

  1. 1.
    García-Hipólito M, Alvarez Fregoso O, Martínez E, Falcony C, Aguilar Frutis MA (2002) Opt Mater 20:113CrossRefGoogle Scholar
  2. 2.
    Duparre A, Welsch E, Walther HG, Kaiser N, Mueller H, Hacker E, Latuh H, Meyer J, Weissbrodt P (1994) Thin Solid Film 250:1CrossRefGoogle Scholar
  3. 3.
    Choi SC, Cho MH, Whang SW, Kang SB, Lee SI (1997) Appl Phys Lett 71:903CrossRefGoogle Scholar
  4. 4.
    Zhang S, Xiao R (1998) J Appl Phys 83:3842CrossRefGoogle Scholar
  5. 5.
    Ivanic R, Rehacek V, Novotny I, Breternitz V, Spiess L, Knedlik CH, Tvarozek V (2001) Vacuum 6:229CrossRefGoogle Scholar
  6. 6.
    Lou L, Zhang W, Brioude A, Le Luyer C, Mugnier J (2001) Opt Mater 18:331CrossRefGoogle Scholar
  7. 7.
    Robertson J (2006) Rep Prog Phys 69:334CrossRefGoogle Scholar
  8. 8.
    Aguilar-Frutis M, García M, Falcony C (1998) Appl Phys Lett 72(14):1700CrossRefGoogle Scholar
  9. 9.
    Alarcón-Flores G, Aguilar-Frutis M, Falcony C, García Hipólito M, Araiza JJ, Herrera-Suárez YHJ (2006) J Vac Sci Technol B 24(4):1875CrossRefGoogle Scholar
  10. 10.
    Blandenet G, Court M, Lagarde Y (1981) Thin Solid Film 77:81CrossRefGoogle Scholar
  11. 11.
    Wang S-Y, Lu Z-H (2002) Mater Chem Phys 78:542CrossRefGoogle Scholar
  12. 12.
    Gurvitch M, Manchanda L, Gibson JM (1987) Appl Phys Lett 51(12):919CrossRefGoogle Scholar
  13. 13.
    Swamy V, Dubrovinskaya NA, Dubrovinsky LS (1999) J Mater Res 14(2):456CrossRefGoogle Scholar
  14. 14.
    Araiza JJ, Aguilar-Frutis MA, Falcony C (2001) J Vac Sci Technol B 19(6):2206CrossRefGoogle Scholar
  15. 15.
    Ivanic R, Rehacek V, Novotny I, Breternitz V, Spiess L, Knedlik CH, Tvarozek V (2001) Vacuum 6:229CrossRefGoogle Scholar
  16. 16.
    Gaboriaud RJ, Paumier F, Paillaoux F, Guerin P (2004) Mater Sci Eng B 109:34CrossRefGoogle Scholar
  17. 17.
    Hao J, Studenikin SA, Cocivera M (2001) J Lumin 93:313CrossRefGoogle Scholar
  18. 18.
    Fountain GG, Rudder RA, Hattangady SV, Markunas RJ (1988) J Appl Phys 63:4744CrossRefGoogle Scholar
  19. 19.
    Stryckmans O, Segato T, Duvigneaud PH (1996) Thin Solid Films 283(1):7Google Scholar
  20. 20.
    Mehrotra RC, Bohra R, Gaur DP (1978) Metal β diketonates and allied derivates. Academic Press Inc., London, p 58Google Scholar
  21. 21.
    Mclafferty F, Turecer F (1993) Interpretation of mass spectra. University Science Books, USA, p 52Google Scholar
  22. 22.
    Nakamoto K (1986) Infrared and Raman spectra of inorganic and coordination compounds. John Wiley and Sons, USA, p 259Google Scholar
  23. 23.
    Guo H, Zhang W, Lou L, Brioude A, Mugnier J (2004) Thin Solid Films 458:274CrossRefGoogle Scholar
  24. 24.
    Adams AC (1983) Solid State Technol 26:135Google Scholar
  25. 25.
    Niu D, Ashcraft RW, Parsons GN (2002) Appl Phys Lett 80(19):3575CrossRefGoogle Scholar
  26. 26.
    Durand C, Dubourdieu C, Vallee C, Loup V, Bonvalot M, Joubert O, Roussel H, Renault O (2004) J Appl Phys 96(3):1719CrossRefGoogle Scholar
  27. 27.
    Horng RH, Wuu DS, Yu JW, Kung CY (1996) Thin Solid Films 289:234CrossRefGoogle Scholar
  28. 28.
    Araiza JJ, Cardenas M, Falcony C, Mendez Garcia VM, Lopez M, Contreras-Puente G (1998) J Vac Sci Technol A16:3305CrossRefGoogle Scholar
  29. 29.
    Cullity BD (1954) Elements of X-ray diffraction. Addison-Wesley, Publishing Company Inc., p 261Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • G. Alarcón-Flores
    • 1
    Email author
  • M. Aguilar-Frutis
    • 1
  • M. García-Hipolito
    • 2
  • J. Guzmán-Mendoza
    • 1
  • M. A. Canseco
    • 2
  • C. Falcony
    • 3
  1. 1.CICATA-IPNMexicoMexico
  2. 2.IIM-UNAMMexicoMexico
  3. 3.Departamento de FísicaCINVESTAVMexicoMexico

Personalised recommendations