Journal of Materials Science

, Volume 43, Issue 10, pp 3569–3576 | Cite as

In situ boron carbide–titanium diboride composites prepared by mechanical milling and subsequent Spark Plasma Sintering

  • Dina V. Dudina
  • Dustin M. Hulbert
  • Dongtao Jiang
  • Cosan Unuvar
  • Sheldon J. Cytron
  • Amiya K. MukherjeeEmail author


Boron carbide–titanium diboride composites were synthesized and consolidated by Spark Plasma Sintering (SPS) of mechanically milled elemental powder mixtures. The phase and microstructure evolution of the composites during sintering in the 1,200–1,700 °C temperature range was studied. With increasing sintering temperature, the phase formation of the samples was completed well before full density was achieved. The distribution of titanium diboride in the sintered samples was significantly improved with increasing milling time of the Ti–B–C powder mixtures. A bulk composite material of nearly full density, fine uniform microstructure, and increased fracture toughness was obtained by SPS at 1,700 °C. The grain size of boron carbide and titanium diboride in this material was 5–7 and 1–2 μm, respectively.


Tungsten Carbide Spark Plasma Sinter Boron Carbide Mechanical Milling Titanium Diboride 



This work was supported by the Army Research Office (Grant #W911NF-04-01-0348) with Dr.Sheldon Cytron as program manager.


  1. 1.
    Trévenot F (1990) J Eur Ceram Soc 6:205CrossRefGoogle Scholar
  2. 2.
    Lee H, Speyer R (2003) J Am Ceram Soc 86:1468CrossRefGoogle Scholar
  3. 3.
    Roy TK, Subramanian C, Suri AK (2006) Ceramics Int 32:227CrossRefGoogle Scholar
  4. 4.
    Goldstein A, Yeshurun Y, Goldenberg A (2007) J Eur Ceram Soc 27:695CrossRefGoogle Scholar
  5. 5.
    Kim DK, Kim CH (1988) Adv Ceram Mater 3:52CrossRefGoogle Scholar
  6. 6.
    Sigl LS, Schwetz KA (1994) JJAP 10:224Google Scholar
  7. 7.
    Skorokhod V Jr, Vlajic MD, Krstic VD (1996) J Mater Sci Lett 15:1337CrossRefGoogle Scholar
  8. 8.
    Goto T, Li J, Hirai T (1998) In: 17th Conference on thermoelectrics, IEEE, vol 8, p 574Google Scholar
  9. 9.
    Levin L, Frage N, Dariel MP (1999) Metal Mater Trans A30:3201CrossRefGoogle Scholar
  10. 10.
    Skorokhod V Jr, Krstic VD (2000) J Mater Sci Lett 19:237CrossRefGoogle Scholar
  11. 11.
    Skorohod Vl V, Krstic VD (2000) Powder Metall Metal Ceram 39:414CrossRefGoogle Scholar
  12. 12.
    Skorohod Vl V, Krstic VD (2000) Powder Metall Metal Ceram 39:504CrossRefGoogle Scholar
  13. 13.
    Cai KF, Nan CW, Schmuecker M, Mueller E (2003) J Alloys Comp 350:313CrossRefGoogle Scholar
  14. 14.
    Yamada S, Hirao K, Yamauchi Y, Kanzaki S (2003) J Eur Ceram Soc 23:1123CrossRefGoogle Scholar
  15. 15.
    Baharvandi HR, Hadian AM, Alizadeh A (2006) Appl Comp Mater 13:191CrossRefGoogle Scholar
  16. 16.
    Anselmi-Tamburini U, Kodera Y, Gasch M, Unuvar C, Munir ZA, Ohyanagi M, Johnson SM (2006) J Mater Sci 41:3097CrossRefGoogle Scholar
  17. 17.
    Mamedov V (2002) Powder Metall 45:322CrossRefGoogle Scholar
  18. 18.
    Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) J Mater Sci 41:763CrossRefGoogle Scholar
  19. 19.
    Suryanarayana C (2001) Prog Mater Sci 46:1CrossRefGoogle Scholar
  20. 20.
    Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) J Am Ceram Soc 64:533CrossRefGoogle Scholar
  21. 21.
    Takacs L (2002) Prog Mater Sci 47:355CrossRefGoogle Scholar
  22. 22.
    Munir ZA, Anselmi-Tamburini U (1989) Mater Sci Rep 3:277CrossRefGoogle Scholar
  23. 23.
    Radev DD, Klisurski D (1994) J Alloys Comp 206:39CrossRefGoogle Scholar
  24. 24.
    Radev DD, Klisurski D (2001) J Mater Synth Proc 9:131CrossRefGoogle Scholar
  25. 25.
    Halverson DC, Lum BY, Munir ZA (1987) In: Munir ZA et al. (eds) Symposium on High-temperature materials-IV at the 172nd Meeting of the electrochemical society. Honolulu, Electrochemical Society, Pennington, NJGoogle Scholar
  26. 26.
    Ramos AS, Taguchi SP, Ramos ECT, Arantes VL, Ribeiro S (2006) Mater Sci Eng A422:184CrossRefGoogle Scholar
  27. 27.
    Takacs L, McHenry JS (2006) J Mater Sci 41:5246CrossRefGoogle Scholar
  28. 28.
    Anselmi-Tamburini U, Munir Z, Kodera Y, Imai T, Ohyanagi M (2005) J Am Ceram Soc 88:1382CrossRefGoogle Scholar
  29. 29.
    Hofmann H, Petzow G (1986) J Less-Comm Met 117:121CrossRefGoogle Scholar
  30. 30.
    Mitra I, Telle R (1997) J Solid State Chem 133:25CrossRefGoogle Scholar
  31. 31.
    Tuffé S, Dubois J, Fantozzi G, Barbier G (1996) Int J Refract Metals Hard Mater 14:305CrossRefGoogle Scholar
  32. 32.
    Heian EM, Khalsa SK, Lee JW, Munir ZA, Yamamoto T, Ohyanagi M (2004) J Am Ceram Soc 87:779CrossRefGoogle Scholar
  33. 33.
    Gusev AI (1997) J Solid State Chem 133:205CrossRefGoogle Scholar
  34. 34.
    Udalov YuP, Valova EE, Ordan’yan SS (1995) Refractories (Translated from Ogneupory) 36:233Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Dina V. Dudina
    • 1
  • Dustin M. Hulbert
    • 1
  • Dongtao Jiang
    • 1
  • Cosan Unuvar
    • 1
  • Sheldon J. Cytron
    • 2
  • Amiya K. Mukherjee
    • 1
    Email author
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of California, DavisDavisUSA
  2. 2.U.S. Army Research Laboratory, Development and Engineering CenterPicatinnyUSA

Personalised recommendations