Advertisement

Journal of Materials Science

, Volume 43, Issue 19, pp 6376–6384 | Cite as

Preparation of nano-grained zirconia ceramics by low-temperature, low-pressure spark plasma sintering

  • Michihito Muroi
  • Geoff Trotter
  • Paul G. McCormick
  • Masakazu Kawahara
  • Masao Tokita
Proceedings of the Symposium on Spark Plasma Synthesis and Sintering

Abstract

Ce- and/or Y-doped zirconia nanopowders having average particle sizes ranging 12–18 nm have been synthesized by a technique based on mechanochemical processing (MCP). Despite their small particle size, the powders had excellent compactibility with green densities exceeding 50% achieved under a moderate uniaxial pressure of 150 MPa. Nearly fully dense ceramics having grain sizes of around 100 nm were successfully produced from these powders by spark plasma sintering (SPS) at temperatures of 1,050–1,150 °C for 5 min under pressures of 50–80 MPa; these temperatures and pressures are considerably lower than those required for achieving near full density with conventional nanopowders. Hardness and fracture-toughness measurements showed that the ceramics prepared by SPS had superior mechanical properties to those prepared by conventional pressureless sintering. It is argued that the high sinterability of the MCP nanopowders is ascribed to their ability to form uniform powder compacts under relatively low pressure, and that that ability in turn originates in two features of the MCP powders: absence of hard agglomeration and pseudo-spherical particle morphology.

Keywords

Zirconia Spark Plasma Sinter Full Density Tetragonal Zirconia Superior Mechanical Property 

References

  1. 1.
    Rhodes WH (1981) J Am Ceram Soc 64:19CrossRefGoogle Scholar
  2. 2.
    Skandan G (1995) NanoStruct Mater 5:111CrossRefGoogle Scholar
  3. 3.
    Sardic V, Winterer M, Hahn H (2000) J Am Ceram Soc 83:729CrossRefGoogle Scholar
  4. 4.
    Gao L, Lia W, Wanga HZ, Zhoub JX, Chaob ZJ, Zaib QZ (2001) J Eur Ceram Soc 83:135CrossRefGoogle Scholar
  5. 5.
    Bravo-Leon A, Morikawa Y, Kawahara M, Mayo MJ (2002) Acta Mater 50:4555CrossRefGoogle Scholar
  6. 6.
    Mayo MJ, Suresh A, Porter WD (2003) Rev Adv Mater Sci 5:100Google Scholar
  7. 7.
    Muroi M, Trotter G (2006) Ceramic Trans 190:129 [Also in Proceedings of the 6th pacific rim conference on ceramic and glass technology, Maui, Hawaii, September 2005 (in CD-ROM).]Google Scholar
  8. 8.
    McCormick PG, Ding J, Miao W–F, Street R (2001) US Patent 6203768 B1Google Scholar
  9. 9.
    McCormick PG, Tsuzuki T (2003) US Patent 6503475Google Scholar
  10. 10.
    Ding J, Tsuzuki T, McCormick PG, Street R (1996) J Phys D—Appl Phys 29:2365CrossRefGoogle Scholar
  11. 11.
    Ding J, Tsuzuki T, McCormick PG (1996) J Am Ceram Soc 79:2956CrossRefGoogle Scholar
  12. 12.
    Dodd AC, Raviprasad K, McCormick PG (2001) Scripta Mater 44:689CrossRefGoogle Scholar
  13. 13.
    Dodd AC, McCormick PG (2001) Acta Mater 49:4215CrossRefGoogle Scholar
  14. 14.
    Dodd AC, McCormick PG (2002) J Eur Ceram Soc 22:1823CrossRefGoogle Scholar
  15. 15.
    Tsuzuki T, McCormick PG (1997) Appl Phys A 65:607CrossRefGoogle Scholar
  16. 16.
    Liu W, McCormick PG (1999) NanoStruct Mater 12:187CrossRefGoogle Scholar
  17. 17.
    Muroi M, Street R, McCormick PG (2000) J Appl Phys 87:3424CrossRefGoogle Scholar
  18. 18.
    Muroi M, Street R, McCormick PG, Amighian J (2001) Phys Rev B 63:184414CrossRefGoogle Scholar
  19. 19.
    Yoshimura M, Ohji T, Sando M, Niihara K (1988) J Mater Sci Lett 17:1389CrossRefGoogle Scholar
  20. 20.
    Li W, Gao L (2000) J Eur Ceram Soc 20:2441CrossRefGoogle Scholar
  21. 21.
    Chen XJ, Khor KA, Chan SH, Yu LG (2003) Mater Sci Eng A341:43CrossRefGoogle Scholar
  22. 22.
    Anselmi-Tamburini U, Garay JE, Munir ZA, Tacca A, Maglia F, Spinolo G (2004) J Mater Res 19:3255CrossRefGoogle Scholar
  23. 23.
    Anselmi-Tamburini U, Garay JE, Munir ZA (2006) Scripta Mater 54:823CrossRefGoogle Scholar
  24. 24.
    Graeve OA, Singh H, Clifton A (2005) In: Proceedings of the 6th pacific rim conference on ceramic and glass technology, Maui, Hawaii, September 2005 (in CD-ROM)Google Scholar
  25. 25.
    Amin KE (1991) Toughness, hardness, and wear. In: Schneider SJ (ed) Ceramics and glasses, engineering materials handbook, vol 4. ASM International, Materials Park, p 601Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Michihito Muroi
    • 1
  • Geoff Trotter
    • 1
  • Paul G. McCormick
    • 1
  • Masakazu Kawahara
    • 2
  • Masao Tokita
    • 2
  1. 1.Advanced Nanotechnology LimitedWelshpoolAustralia
  2. 2.SPS Syntex Inc.Kawasaki-shiJapan

Personalised recommendations