Journal of Materials Science

, Volume 43, Issue 13, pp 4356–4362 | Cite as

Solid-state spun fibers and yarns from 1-mm long carbon nanotube forests synthesized by water-assisted chemical vapor deposition

  • Shanju Zhang
  • Lingbo Zhu
  • Marilyn L. Minus
  • Han Gi Chae
  • Sudhakar Jagannathan
  • Ching-Ping Wong
  • Janusz Kowalik
  • Luke B. Roberson
  • Satish KumarEmail author
Commonality of Phenomena in Composite Materials


We report continuous carbon nanotube (CNT) fibers and yarns dry-drawn directly from water-assisted chemical vapor deposition (CVD) grown forests with about 1-mm height. As-drawn CNT fibers exist as aerogel and can be transformed into more compact fibers through twisting or densification with a volatile organic liquid. CNT fibers are characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, Raman microscopy, and wide-angle X-ray diffraction. Mechanical properties and electrical conductivity of the post-treated CNT fibers are investigated. The resulting fibers show the work of rupture of 30 J/g and DC electrical conductivity of 5.0 × 104 S/m.


Densified Fiber Show Scanning Electron Microscopy Image Chemical Vapor Deposition Growth Compact Fiber Efficient Load Transfer 



Financial support from the Air Force Office of Scientific Research (FA9550-06-1-0315) and from the National Aeronautics and Space Administration (UCF-FY-04) are gratefully appreciated.


  1. 1.
    Vigolo B, Penicaud A, Coulon C, Sauder C, Railer R, Journet C, Bernier P, Poulin P (2000) Science 290:1331CrossRefGoogle Scholar
  2. 2.
    Dalton AB, Collins S, Munoz E, Razal J, Ebron VH, Ferraris JP, Coleman JN, Kim BG, Baughman RH (2003) Nature 423:703CrossRefGoogle Scholar
  3. 3.
    Miaudet P, Badaire S, Maugey M, Derre A, Pichot V, Launois P, Poulin P, Zakri C (2005) Nano Lett 5:2212CrossRefGoogle Scholar
  4. 4.
    Zhu HW, Xu CL, Wu DH, Wei BQ, Vajtai R, Ajayan PM (2002) Science 296:884CrossRefGoogle Scholar
  5. 5.
    Li YL, Kinloch IA, Windle AH (2004) Science 304:276CrossRefGoogle Scholar
  6. 6.
    Motta M, Li YL, Kinloch I, Windle A (2005) Nano Lett 5:1529CrossRefGoogle Scholar
  7. 7.
    Ericson LM, Fan H, Peng H, Davis VA, Zhou W, Sulpizio J, Wang Y, Booker R, Vavro J, Guthy C, Para-Vasquez ANG, Kim MJ, Ramesh S, Saini RK, Kittrell C, Lavin G, Schmidt H, Adams WW, Billups WE, Pasquali M, Hwang WF, Hauge RH, Fischer JE, Smalley RE (2004) Science 305:1447CrossRefGoogle Scholar
  8. 8.
    Davis VA, Ericson LM, Parra-Vasquez ANG, Fan H, Wang Y, Prieto V, Longoria JA, Ramesh S, Saini RK, Kittrell C, Billups WE, Adams WW, Hauge RH, Smalley RE, Pasquali M (2004) Macromolecules 37:154CrossRefGoogle Scholar
  9. 9.
    Wang YH, Ericson LM, Kittrell C, Kim MJ, Shan HW, Fan H, Ripley S, Ramesh S, Hauge RH, Adam WW, Pasquali M, Smalley RE (2005) Chem Mater 17:6361CrossRefGoogle Scholar
  10. 10.
    Jiang KL, Li QQ, Fan SS (2002) Nature 419:801CrossRefGoogle Scholar
  11. 11.
    Zhang XB, Jiang KL, Feng C, Liu P, Zhang L, Kong J, Zhang TH, Li QQ, Fan SS (2006) Adv Mater 18:1505CrossRefGoogle Scholar
  12. 12.
    Zhang M, Atkinson KR, Baughman RH (2004) Science 306:1358CrossRefGoogle Scholar
  13. 13.
    Zhang XF, Li QW, Tu Y, Li Y, Coulter Y, Zheng L, Zhao Y, Jia Q, Peterson DE, Zhu YT (2007) Small 3:244CrossRefGoogle Scholar
  14. 14.
    Hata K, Futaba DN, Mizuno K, Namai T, Ymura M, Iijima S (2004) Science 306:1362CrossRefGoogle Scholar
  15. 15.
    Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S (2006) Nat Mater 5:987CrossRefGoogle Scholar
  16. 16.
    Zhu LB, Xiu YH, Hess DW, Wong CP (2005) Nano Lett 5:2641CrossRefGoogle Scholar
  17. 17.
    Zhu LB, Sun YY, Hess DW, Wong CP (2006) Nano Lett 6:243CrossRefGoogle Scholar
  18. 18.
    Yamada T, Namai T, Hata K, Futaba DN, Mizuno K, Fan J, Yudasaka M, Yumura M, Iijima S (2006) Nat Nanotech 1:131CrossRefGoogle Scholar
  19. 19.
    Baughman RH (2006) Nat Nanotech 1:94CrossRefGoogle Scholar
  20. 20.
    Lin L, Bower C, Zhou O (1998) Appl Phys Lett 73:1197CrossRefGoogle Scholar
  21. 21.
    Qian D, Liu WK, Ruoff RS (2003) Compos Sci Technol 63:1561CrossRefGoogle Scholar
  22. 22.
    Pipes RB, Hubert P (2002) Compos Sci Technol 62:419CrossRefGoogle Scholar
  23. 23.
    Bradford P, Fang S, Zhang M, Baughman RH (2007) SAMPE J 43:2Google Scholar
  24. 24.
    Hearle JWS, Grosberg P, Backer S (1969) Structural mechanics of fibers, yarns and fabrics. Wiley, New YorkGoogle Scholar
  25. 25.
    Motta M, Moisala A, Kinloch IA, Windle AH (2007) Adv Mater 19:3721CrossRefGoogle Scholar
  26. 26.
    Hecht D, Hu L, Gruner G (2006) Appl Phys Lett 89:133112CrossRefGoogle Scholar
  27. 27.
    Balberg I, Binenbaum N, Anderson CH (1983) Phys Rev Lett 51:16056CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Shanju Zhang
    • 1
  • Lingbo Zhu
    • 2
  • Marilyn L. Minus
    • 1
  • Han Gi Chae
    • 1
  • Sudhakar Jagannathan
    • 1
  • Ching-Ping Wong
    • 2
  • Janusz Kowalik
    • 3
  • Luke B. Roberson
    • 4
  • Satish Kumar
    • 1
    Email author
  1. 1.School of Polymer, Textile and Fiber EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.School of Materials Sciences and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA
  4. 4.National Aeronautics and Space AdministraionJohn F. Kennedy Space Center, Kennedy Space CenterOrlandoUSA

Personalised recommendations