Advertisement

Journal of Materials Science

, Volume 43, Issue 9, pp 3203–3209 | Cite as

Changes in the mechanical and thermal properties of high impact polystyrene (HIPS) in the presence of low polypropylene (PP) contents

  • F. ParresEmail author
  • R. Balart
  • J. López
  • D. García
Article

Abstract

The final properties of recycled polymers greatly depend on the presence of impurities, which can be detected by differential scanning calorimetry. For the purpose of the present study a total of five high impact polystyrene (HIPS)/polypropylene (PP) blends (100/0; 97.5/2.5; 95/5; 92.5/7.5; 90/10) were prepared and injected at a temperature in the 220–250 °C range. The subsequent mechanical characterization indicates a reduction of tensile strength, elongation at break and impact strength. Scanning Electron Microscopy (SEM) was used in the morphological analysis of the different blends. Finally the variations in the flow measurements and glass transition temperature were analysed using melt flow index (MFI) and differential scanning calorimetry (DSC), respectively. The presence of impurities may have a negative effect on the mechanical properties of the material, but may improve material performance during processing.

Keywords

Differential Scanning Calorimetry Impact Strength Butadiene Moulding Temperature Melting Enthalpy 

Notes

Acknowledgements

The authors thank “Ministerio de Ciencia y Tecnología”, Ref: MAT 2003–05511 for their financial support. We would like to thank the R + D + I Linguistic Assistance Office of the Polytechnic University of Valencia for their help in translating this paper. Also, Microscopy Services at UPV are gratefully acknowledged for their assistance in using SEM techniques. Finally, the authors thank ACTECO, productos y servicios, S.L for their materials.

References

  1. 1.
    Fraunholcz N (2004) Miner Eng 17:261CrossRefGoogle Scholar
  2. 2.
    Cavalieri J, Farin PW, Kinder JE et al (2001) Theriogenology 55:805CrossRefGoogle Scholar
  3. 3.
    Tsukame T, Kutsuzawa M, Sekine H et al (1999) J Therm Anal 57:847CrossRefGoogle Scholar
  4. 4.
    Balart R, Sanchez L, Lopez J et al (2006) Polym Degrad Stab 91:527CrossRefGoogle Scholar
  5. 5.
    Halimatudahliana HI, Nasir M (2002) Polym Test 21:163CrossRefGoogle Scholar
  6. 6.
    Sung YT, Han MS, Hyun JC et al (2003) Polymer 44:1681CrossRefGoogle Scholar
  7. 7.
    Macaubas PHP, Demarquette NR (2001) Polymer 42:2543CrossRefGoogle Scholar
  8. 8.
    Fekete E, Foldes E, Pukanszky M (2005) Eur Polym J 41:727CrossRefGoogle Scholar
  9. 9.
    Park JH, Sung YT, Kim WN et al (2005) Polym (Korea) 29:19Google Scholar
  10. 10.
    Rek V, Holjevac-Grguric T, Jelcic Z (1998) J Macromol Sci Pure Appl Chem A35:1385CrossRefGoogle Scholar
  11. 11.
    Santana R, Manrich S (2003) J Appl Polym Sci 88:2861CrossRefGoogle Scholar
  12. 12.
    Silberberg J, Han CD (1978) J Appl Polym Sci 22:599CrossRefGoogle Scholar
  13. 13.
    Zhou NC (2004) Abstracts of papers of the American Chemical Society 228:552 PMSE Part 2Google Scholar
  14. 14.
    Martins MH, De Paoli MA (2002) Polym Degrad Stab 78:491CrossRefGoogle Scholar
  15. 15.
    Brandrup J, Immergut E (1975) Polymer handbook, 2nd edn. John Wiley, New YorkGoogle Scholar
  16. 16.
    Garcia M, Van Vliet G, Jain S et al (2004) Rev Adv Mater Sci 6:169Google Scholar
  17. 17.
    Marsano E, Vicini S, Skopinska J et al (2004) Macromol Symp 218:251Google Scholar
  18. 18.
    Lee SG, Jae JH, Choi KY et al (1998) Polym Bull 40:765CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Mechanical and Materials EngineeringPolytechnic University of ValenciaAlcoySpain

Personalised recommendations