Journal of Materials Science

, Volume 43, Issue 10, pp 3539–3552 | Cite as

In situ high-temperature electron microscopy of 3DOM cobalt, iron oxide, and nickel

  • Christopher F. BlanfordEmail author
  • C. Barry Carter
  • Andreas Stein


High-temperature electron microscopy was used to follow how the structure of two specimens of three-dimensionally ordered macroporous (3DOM) materials, also known as inverse opals, and one specimen of a precursor to a 3DOM material changed with temperature. The change in grain size with temperature of 3DOM cobalt and 3DOM iron oxide (as magnetite) was monitored in situ in the TEM by heating in stages to 900 and 1,000 °C, respectively. The two materials studied by TEM showed contrasting grain growth behavior. For 3DOM cobalt, carbon surrounding the nanometer-size grains led to slower grain growth in thinner sample areas than in areas in closer contact with other grains; a bimodal grain-size distribution was observed after heating above 700 °C for 90 min. The grains of the 3DOM iron oxide had no carbon coating and coarsened more evenly to give a unimodal size distribution. Line scans from selected-area diffraction (SAD) patterns were used for phase analysis and showed that traces of cobalt oxide present in the 3DOM cobalt sample at room temperature disappeared when the sample was heated above 500 °C. The transformation of a 3DOM precursor material, nickel(II) oxalate–polystyrene (PS) latex composites, was followed in situ by variable-temperature environmental scanning electron microscopy (ESEM) from room temperature to ca. 700 °C in 0.5–0.7 kPa O2. The ESEM examination of the 3DOM precursors permitted real-time observation of the polymer template decomposition and the shrinkage that occurs upon calcination of these precursor materials.


Environmental Scanning Electron Microscopy Colloidal Crystal Powder Diffraction File Cobalt Metal Lithium Iron Phosphate 



The authors thank Dr. Hongwei Yan for providing the samples of 3DOM materials, Dr. Stuart McKernan for assistance with the ESEM and TEM, and the David and Lucile Packard Foundation and the 3M Heltzer Endowed Chair of the University of Minnesota for research funding.


  1. 1.
    Velev OD, Jede TA, Lobo RF, Lenhoff AM (1997) Nature 389:447CrossRefGoogle Scholar
  2. 2.
    Holland BT, Blanford CF, Stein A (1998) Science 281:538CrossRefGoogle Scholar
  3. 3.
    Wijnhoven JEGJ, Vos WL (1998) Science 281:802CrossRefGoogle Scholar
  4. 4.
    Lytle JC, Stein A (2006) In: Cao G, Brinker CJ (eds) Annual reviews of nano research. World Scientific Publishing, Hackensack, NJ, pp 1Google Scholar
  5. 5.
    Stein A, Li F, Denny NR (2008) Chem Mater 20:649CrossRefGoogle Scholar
  6. 6.
    Blanford CF, Yan H, Schroden RC, Al-Daous M, Stein A (2001) Adv Mater 13:401CrossRefGoogle Scholar
  7. 7.
    Schroden RC, Al-Daous M, Blanford CF, Stein A (2002) Chem Mater 14:3305CrossRefGoogle Scholar
  8. 8.
    Joannopoulos JD, Meade RD, Winn JN (1995) Photonic crystals: molding the flow of light. Princeton University Press, PrincetonGoogle Scholar
  9. 9.
    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CT-W, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834CrossRefGoogle Scholar
  10. 10.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603CrossRefGoogle Scholar
  11. 11.
    van Bekkum H, Flanigen EM, Jansen JC (1991) Introduction to zeolite science and practice. Elsevier, AmsterdamGoogle Scholar
  12. 12.
    Huo Q, Margolese DI, Stucky GD (1996) Chem Mater 8:1147CrossRefGoogle Scholar
  13. 13.
    Luck W, Klier M, Wesslau H (1963) Ber Bunsen Phys Chem 67:75CrossRefGoogle Scholar
  14. 14.
    Clark NA, Hurd AJ, Ackerson BJ (1979) Nature 281:57CrossRefGoogle Scholar
  15. 15.
    Yan H, Blanford CF, Holland BT, Smyrl WH, Stein A (2000) Chem Mater 12:1134CrossRefGoogle Scholar
  16. 16.
    Subramania G, Constant K, Biswas R, Sigalas MM, Ho KM (1999) Appl Phys Lett 74:3933CrossRefGoogle Scholar
  17. 17.
    Blanco A, Chomski E, Grabtchak S, Ibisate M, John S, Leonard SW, López C, Meseguer F, Míguez H, Mondia JP, Ozin GA, Toader O, van Driel HM (2000) Nature 405:437CrossRefGoogle Scholar
  18. 18.
    King JS, Gaillot DP, Graugnard E, Summers CJ (2006) Adv Mater 18:1063CrossRefGoogle Scholar
  19. 19.
    Caruso F, Caruso RA, Möhwald H (1998) Science 282:1111CrossRefGoogle Scholar
  20. 20.
    John S (1987) Phys Rev Lett 58:2486CrossRefGoogle Scholar
  21. 21.
    Yablonovitch E (1987) Phys Rev Lett 58:2059CrossRefGoogle Scholar
  22. 22.
    Megens M, Vankats CM, Bosecke P, Vos WL (1997) J Appl Crystallogr 30:637CrossRefGoogle Scholar
  23. 23.
    Vos WL, Megens M, Vankats CM, Bosecke P (1997) Langmuir 13:6004CrossRefGoogle Scholar
  24. 24.
    Vos WL, Sprik R, van Blaaderen A, Imhof A, Lagendijk A, Wegdam GH (1996) Phys Rev B 53:16231CrossRefGoogle Scholar
  25. 25.
    Blanford CF, Carter CB, Stein A (2004) J Microsc Oxford 216:263CrossRefGoogle Scholar
  26. 26.
    Schroden RC, Stein A (2004) In: Caruso F (ed) Colloids and colloid assemblies: synthesis, modification, organization and utilization of colloid particles. Wiley VCH, Weinheim, Germany, pp 465Google Scholar
  27. 27.
    Mittleman DM, Bertone JF, Jiang P, Hwang KS, Colvin VL (1999) J Chem Phys 111:345CrossRefGoogle Scholar
  28. 28.
    Anderson MW, Ohsuna T, Sakamoto Y, Liu Z, Carlsson A, Terasaki O (2004) Chem Commun 907Google Scholar
  29. 29.
    Kamino T, Yaguchi T, Konno M, Hashimoto T (2005) J Electron Microsc 54:461Google Scholar
  30. 30.
    Akita T, Tanaka K, Kohyama M, Haruta M (2007) Catal Today 122:233CrossRefGoogle Scholar
  31. 31.
    Yoshida R, Suzuki Y, Yoshikawa S (2005) Mater Chem Phys 91:409CrossRefGoogle Scholar
  32. 32.
    Setoyama M, Irie M, Ohara H, Tsujioka M, Takeda Y, Nomura T, Kitagawa N (1999) Thin Solid Films 341:126CrossRefGoogle Scholar
  33. 33.
    Lee J, Lee J, Tanaka T, Mori H, Penttila K (2005) JOM-J Min Met Mat S 57:56CrossRefGoogle Scholar
  34. 34.
    Lee JG, Mori H (2004) Philos Mag 84:2675CrossRefGoogle Scholar
  35. 35.
    Gai PL, Calvino JJ (2005) Ann Rev Mater Res 35:465CrossRefGoogle Scholar
  36. 36.
    Gai PL, Kourtakis K (1995) Science 267:661CrossRefGoogle Scholar
  37. 37.
    Meller N, Hall C, Crawshaw J (2004) J Mater Sci 39:6611CrossRefGoogle Scholar
  38. 38.
    Meredith P, Donald AM, Meller N, Hall C (2004) J Mater Sci 39:997CrossRefGoogle Scholar
  39. 39.
    Baranov AN, Chang CH, Shlyakhtini A, Panin GN, Kang TW, Oh YJ (2004) Nanotechnology 15:1613CrossRefGoogle Scholar
  40. 40.
    Siriwardane RV, Poston JA, Fisher EP (2005) Appl Surf Sci 243:40CrossRefGoogle Scholar
  41. 41.
    Holland BT, Blanford CF, Do T, Stein A (1999) Chem Mater 11:795CrossRefGoogle Scholar
  42. 42.
    Yan H, Blanford CF, Holland BT, Parent M, Smyrl WH, Stein A (1999) Adv Mater 11:1003CrossRefGoogle Scholar
  43. 43.
    Yan H, Blanford CF, Lytle JC, Carter CB, Smyrl WH, Stein A (2001) Chem Mater 13:4314CrossRefGoogle Scholar
  44. 44.
    Blanford CF (2000) Ph.D. Dissertation, University of Minnesota, Twin CitiesGoogle Scholar
  45. 45.
    Goodwin JW, Hearn J, Ho CC, Ottewill RH (1973) Br Polym J 5:347CrossRefGoogle Scholar
  46. 46.
    Goodwin JW, Ottewill RH, Pelton R, Vianello G, Yates DE (1978) Br Polym J 10:173CrossRefGoogle Scholar
  47. 47.
    Tanrisever T, Okay O, Sönmezoglu IÇ (1996) J Appl Polym Sci 61:485CrossRefGoogle Scholar
  48. 48.
    Sawada H (1996) Mater Res Bull 31:141CrossRefGoogle Scholar
  49. 49.
    Williams DB, Carter CB (1996) Transmission electron microscopy: a textbook for materials science. Plenum Press, New YorkCrossRefGoogle Scholar
  50. 50.
    Hull AW (1917) Phys Rev 10:661CrossRefGoogle Scholar
  51. 51.
    Sasaki S (1997) Acta Cryst B53:762CrossRefGoogle Scholar
  52. 52.
    Fjellvag H, Gronvold F, Stolen S, Hauback B (1996) J Solid State Chem 124:52CrossRefGoogle Scholar
  53. 53.
    Tombs NC, Rooksby HP (1950) Nature 165:442CrossRefGoogle Scholar
  54. 54.
    Hull AW (1921) Phys Rev 17:571CrossRefGoogle Scholar
  55. 55.
    Darken LS, Gurry RW (1946) J Am Chem Soc 68:798CrossRefGoogle Scholar
  56. 56.
    Phillips B, Muan A (1960) J Phys Chem 64:1451CrossRefGoogle Scholar
  57. 57.
    Presnall DC (1995) In: Ahrens TJ (ed) Mineral physics and crystallography: a handbook of physical constants. American Geophysical Union, Washington, DC, pp 248CrossRefGoogle Scholar
  58. 58.
    Rieger J (1996) J Them Anal Calorim 46:965CrossRefGoogle Scholar
  59. 59.
    Cazaux J (2004) Microsc Microanal 10:670CrossRefGoogle Scholar
  60. 60.
    Moncrieff DA, Robinson VNE, Harris LB (1978) J Phys D Appl Phys 11:2315CrossRefGoogle Scholar
  61. 61.
    Lide DR (ed) (1996) CRC handbook of chemistry and physics. CRC Press, Ann ArborGoogle Scholar
  62. 62.
    Grimley RT, Burns RP, Inghram MG (1966) J Chem Phys 45:4158CrossRefGoogle Scholar
  63. 63.
    Yang MR, Teng TH, Wu SH (2006) J Power Sources 159:307CrossRefGoogle Scholar
  64. 64.
    Zhu SM, Fahrenholtz WG, Hilmas GE, Zhang SC (2007) Mater Sci Eng A Struct 459:167CrossRefGoogle Scholar
  65. 65.
    Host JJ, Block JA, Parvin K, Dravid VP, Alpers JL, Sezen T, LaDuca R (1998) J Appl Phys 83:793CrossRefGoogle Scholar
  66. 66.
    Xiao C, Mirshams RA, Whang SH, Yin WM (2001) Mater Sci Eng A Struct 301:35CrossRefGoogle Scholar
  67. 67.
    Hibbard GD, McCrea JL, Palumbo G, Aust KT, Erb U (2002) Scripta Mater 47:83CrossRefGoogle Scholar
  68. 68.
    Carter CB, Norton MG (2007) Ceramic materials: science and engineering. Springer-Verlag, New YorkGoogle Scholar
  69. 69.
    Zeng P, Zajac S, Clapp PC, Rifkin JA (1998) Mater Sci Eng A Struct 252:301CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Christopher F. Blanford
    • 1
    • 2
    Email author
  • C. Barry Carter
    • 3
  • Andreas Stein
    • 1
  1. 1.Department of ChemistryUniversity of MinnesotaMinneapolisUSA
  2. 2.University of Oxford, Inorganic Chemistry LaboratoryOxfordUK
  3. 3.Department of Chemical, Materials & Biomolecular EngineeringUniversity of ConnecticutStorrsUSA

Personalised recommendations