Journal of Materials Science

, Volume 43, Issue 9, pp 3314–3319 | Cite as

Evolution of crystallization and its effects on properties during pyrolysis of Si–Al–C–(O) precursor fibers

  • Chun-Man ZhengEmail author
  • Xiao-Dong Li
  • Hao Wang
  • Da-Fang Zhao
  • Tian-Jiao Hu


The high-temperature resistant Si–Al–C–(O) fibers were prepared through polymer-derived method using continuous polyaluminocarbosilane (PACS) fibers. Evolutions of the crystallization during the pyrolysis of the Si–Al–C–(O) precursor fibers were investigated by a series analysis. The structure of the fibers transforms from organic state to inorganic state and the crystalline phases appear during the pyrolysis. The β-SiC crystallite size increases when the temperature is higher than 1,300 °C. At the same time, the α-SiC appears. At 1,600 and 1,800 °C, the grain size of β-SiC of the fibers is 15.4 and 22.1 nm, respectively. The growth of β-SiC and the appearing of α-SiC have a great influence on the properties of the fibers. The change of the tensile strength of the pyrolysis products is divided into three stages with the growth of the crystal. The tensile strength of the Si-Al-C fibers is higher than 1.9 GPa.


Tensile Strength Nuclear Magnetic Resonance Pyrolysis AcAc Nuclear Magnetic Resonance Spectrum 



The authors acknowledge the financial support of the Chinese Natural Science Fund under (Grant No. 59972042).


  1. 1.
    Johnson DW, Evans AG, Goettler RW (1998) In: Ceramic fibers and coatings: advanced materials for the twenty-first century. National Academy Press, Washington DC, p 1Google Scholar
  2. 2.
    Yajima S, Hasegawa J, Iimura M (1978) J Mater Sci 13:2569Google Scholar
  3. 3.
    Yajima S, Hayashi J, Omori M et al (1976) Nature 261:683CrossRefGoogle Scholar
  4. 4.
    Mah T, Hecht NL, McCullum DE et al (1984) J Mater Sci 19:1191CrossRefGoogle Scholar
  5. 5.
    Clark TJ, Marons RM, Stamatoff JB et al (1985) Ceram Eng Sci Proc 6:576CrossRefGoogle Scholar
  6. 6.
    Yu YX, Li XD, Cao F et al (2003) J Chin Ceram Soc 4:371Google Scholar
  7. 7.
    Ishikawa T, Kohtoku Y, Kumagawa K et al (1998) Nature 391:773CrossRefGoogle Scholar
  8. 8.
    Wang YD, Feng CX, Song YC et al (1997) Aeros Mater Techn 2:21Google Scholar
  9. 9.
    Zheng CM, Zhu B, Li XD et al (2004) Acta Polym Sinica 2:246Google Scholar
  10. 10.
    Ly HQ, Taylor R, Day RJ et al (2001) J Mater Sci 36:4045CrossRefGoogle Scholar
  11. 11.
    Soraru GD, Babonneau F, Mackenzie JD (1990) J Mater Sci 25:3886CrossRefGoogle Scholar
  12. 12.
    Hasegawa Y, Okamura K (1983) J Mater Sci 18:3633CrossRefGoogle Scholar
  13. 13.
    Babonneau F, Soraru GD, Thorne KJ et al (1991) J Am Ceram Soc 74:1725CrossRefGoogle Scholar
  14. 14.
    Li XD, Edirisinghe MJ (2003) J Am Ceram Soc 86:2212CrossRefGoogle Scholar
  15. 15.
    Stevens SJ, Hand RJ, Sharp JH (1997) J Mater Sci 32:2929CrossRefGoogle Scholar
  16. 16.
    Hand RJ, Stevens SJ, Sharp JH (1998) Thermochimica Acta 318:115CrossRefGoogle Scholar
  17. 17.
    Li XD, Edirisinghe MJ (2004) Chem Mater 16:1111CrossRefGoogle Scholar
  18. 18.
    Li XD, Edirisinghe MJ (2004) Philos Mag 84:647CrossRefGoogle Scholar
  19. 19.
    Yu YX, Li XD, Cao F (2004) Advan Comp Lett 13:245Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Chun-Man Zheng
    • 1
    Email author
  • Xiao-Dong Li
    • 1
  • Hao Wang
    • 1
  • Da-Fang Zhao
    • 1
  • Tian-Jiao Hu
    • 1
  1. 1.State Key Laboratory of New Ceramic Fibers and CompositesSchool of Aerospace and Materials Engineering, National University of Defense TechnologyChangshaPeople’s Republic of China

Personalised recommendations