Journal of Materials Science

, Volume 43, Issue 8, pp 2806–2811 | Cite as

Polymer–ceramic conversion of a highly branched liquid polycarbosilane for SiC-based ceramics

Article

Abstract

Liquid polycarbosilane (LPCS) with a highly branched structure was characterized by fourier-transform infrared spectrometry (FT-IR) and 1H, 13C, 29Si nuclear magnetic resonance spectrometry (NMR). The LPCS was then cured and pyrolysized up to 1,600 °C under flowing argon. The structural evolution process was studied by thermogravimetric analysis and differential scanning calorimetry (TG-DSC), FT-IR, and X-ray diffraction (XRD). Hydrosilylation, dehydrocoupling, and polymerization cross-linking reactions between Si–H and C=C groups occurred at low temperatures, which mainly accounted for the high ceramic yield (70%) up to 1,400 °C. The organic groups gradually decomposed and the structure rearranged at high temperatures. The FT-IR analysis revealed that Si–CH2–Si chains, the backbone of original polymer, can be retained up to 1,200 °C. At temperatures higher than 1,200 °C, the Si–CH2–Si chains broke down and crystalline SiC began to form. The final crystalline products were β-SiC and a small amount of carbon.

References

  1. 1.
    Goto Y, Thomas G (1995) J Mater Sci 30:2194CrossRefGoogle Scholar
  2. 2.
    Kroke E, Li YL, Konetschny C et al (2000) Mater Sci Eng R 26:97CrossRefGoogle Scholar
  3. 3.
    Yajima S, Hasegawa Y, Okamura K et al (1978) Nature 273:525CrossRefGoogle Scholar
  4. 4.
    Zbigniew SR (2001) J Am Ceram Soc 84:2235Google Scholar
  5. 5.
    Liew L, Zhang W, An L, Shah S et al (2001) Am Ceram Soc Bull 80:25Google Scholar
  6. 6.
    Riedel R, Kienzle A, Dressler W et al (1996) Nature 382:796CrossRefGoogle Scholar
  7. 7.
    An L, Riedel R, Konetachny C et al (1998) J Am Ceram Soc 81:1349CrossRefGoogle Scholar
  8. 8.
    Riedel R, Ruwisch LM, An L et al (1998) J Am Ceram Soc 81:3341CrossRefGoogle Scholar
  9. 9.
    Ramakrishnan PA, Wang YT, Balzar D et al (2001) Appl Phys Lett 78:3076CrossRefGoogle Scholar
  10. 10.
    Wang Y, Fan Y, Zhang L et al (2005) J Am Ceram Soc 88:3075CrossRefGoogle Scholar
  11. 11.
    Wang Y, Fan Y, Zhang L et al (2006) Scripta Mater 55:295CrossRefGoogle Scholar
  12. 12.
    Wang Y, Fei W, An L (2006) J Am Ceram Soc 89:1079CrossRefGoogle Scholar
  13. 13.
    Wang Y, Fei W, Fan Y et al (2006) J Mater Res 21:1625CrossRefGoogle Scholar
  14. 14.
    Yajima S, Hayashi J, Omori M et al (1976) Nature 261:683CrossRefGoogle Scholar
  15. 15.
    Takeda M, Imai Y, Ichikawa H et al (1992) Ceram Engi Sic Prog 13:209Google Scholar
  16. 16.
    Kriner WA (1964) J Org Chem 29:1601CrossRefGoogle Scholar
  17. 17.
    Schilling CL, Wesson JP, Williams TC (1983) Am Ceram Soc Bull 62:912Google Scholar
  18. 18.
    Birot M, Pillot JP, Dunogues J (1995) Chem Rev 95:1443CrossRefGoogle Scholar
  19. 19.
    Narisawa M, Kitano S, Idesaki A et al (1998) J Mater Sci 33:2663CrossRefGoogle Scholar
  20. 20.
    Bouillon E, Langlais F, Pailler R et al (1991) J Mater Sci 26:1333CrossRefGoogle Scholar
  21. 21.
    Janakiraman N, Weinmann M, Schuhmacher J et al (2002) J Am Ceram Soc 85:1807CrossRefGoogle Scholar
  22. 22.
    Ly HQ, Taylor R, Day RJ (2001) J Mater Sci 36:4027CrossRefGoogle Scholar
  23. 23.
    Fitzgerald TJ, Mortensen A (1995) J Mater Sci 30:1025CrossRefGoogle Scholar
  24. 24.
    Huang TH, Yu ZJ, He XM et al (2007) Chin Chem Lett 18:754CrossRefGoogle Scholar
  25. 25.
    Bouillon E, Langlais F, Pailler R et al (1991) J Mater Sci 26:1333CrossRefGoogle Scholar
  26. 26.
    Hasegawa Y, Okamura K (1986) J Mater Sci 21:321CrossRefGoogle Scholar
  27. 27.
    LY HQ, Taylor R, Day RJ et al (2001) J Mater Sci 36:4037CrossRefGoogle Scholar
  28. 28.
    Froehling PE (1993) J Inorg Organomet Polym 3:251CrossRefGoogle Scholar
  29. 29.
    Whitmarsh CK, Interrante LV (1991) Organometallics 10:1336CrossRefGoogle Scholar
  30. 30.
    Matthews S, Edirisinghe MJ, Folkes MJ (1999) Ceram Int 25:49CrossRefGoogle Scholar
  31. 31.
    Rushkin IL, Shen Q, Lehman SE et al (1997) Macromolecules 30:3141CrossRefGoogle Scholar
  32. 32.
    Michalczyk MJ, Davidson F (1994) Monatshefte für Chemie 125:895CrossRefGoogle Scholar
  33. 33.
    Gonon MF, Hampshire S, Dissod JP et al (1995) J Eur Ceram Soc 15:683CrossRefGoogle Scholar
  34. 34.
    Choong Kwet Yive NS, Corriu RJP, Leclerq D et al (1992) Chem Mater 4:141CrossRefGoogle Scholar
  35. 35.
    Hasegawa Y, Iimura M, Yajima S (1980) J Mater Sci 15:720CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Houbu Li
    • 1
  • Litong Zhang
    • 1
  • Laifei Cheng
    • 1
  • Yiguang Wang
    • 1
  • Zhaoju Yu
    • 2
  • Muhe Huang
    • 2
  • Huibin Tu
    • 2
  • Haiping Xia
    • 2
  1. 1.National Key Laboratory of Thermostructure Composite MaterialsNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Laboratory of Advanced Materials and Department of Materials Science and EngineeringCollege of Chemistry and Chemical Engineering, Xiamen UniversityXiamenChina

Personalised recommendations