Advertisement

Journal of Materials Science

, Volume 43, Issue 12, pp 4107–4111 | Cite as

Effect of plant-derived organic binders on fracture toughness and fatigue of kaolin-based refractories

  • M. S. Njogu
  • F. W. Nyongesa
  • B. O. Aduda
Rees Rawlings Festschrift

Abstract

The fracture properties of kaolin-based refractories prepared using plant-derived binders from okra and “mrenda” have been investigated and compared. It was observed that the MOR of fired samples improved from 37.5 ± 0.1 MPa (for binder-free samples) to 69.6 ± 0.1 MPa, and to 120.0 ± 0.1 MPa for okra- and ‘mrenda’-plasticized samples, respectively, while the fracture toughness increased from 3.9 ± 0.1 MPa (for binder-free samples) to 5.6 ± 0.1 and 5.7 ± 0.1 MPa for okra and ‘mrenda’-plasticized samples, respectively. It is concluded that the use of organic binders enhances the reliability and service life of kaolin refractories used in thermally fluctuating environments.

Keywords

Fracture Toughness Kaolin Sintered Density Weibull Modulus Organic Binder 

References

  1. 1.
    Segall AE, Meeker J (2007) Trans ASME 129(5):306Google Scholar
  2. 2.
    Baklouti S, Chartier T, Bannard JF (1997) J Am Ceram Soc 80(8):1992CrossRefGoogle Scholar
  3. 3.
    Brewer JA, Moore RH, Reed JS (1981) Am Ceram Soc Bull 68(2):212Google Scholar
  4. 4.
    Lyckfeldt O, Feraira JMF (1998) J Eur Ceram Soc 18:131CrossRefGoogle Scholar
  5. 5.
    Bassner SL, Kingenberg EK (1998) Am Ceram Soc Bull 18(2):71Google Scholar
  6. 6.
    Uhland SA, Holman RK, Morissette S, Cima MJ, Sachs EM (2001) J Am Ceram Soc 84(12):2809CrossRefGoogle Scholar
  7. 7.
    Aduda BO, Nyongesa FW, Obado G (1999), J Mater Sci Lett 18:1653CrossRefGoogle Scholar
  8. 8.
    Ogacho AA, Aduda BO, Nyongesa FW (2006) J Mater Sci 41:8276. doi: https://doi.org/10.1007/s10853-006-1007-6 CrossRefGoogle Scholar
  9. 9.
    Rock T, Cartwright FY (1956) J Appl Phys 27(9):1086CrossRefGoogle Scholar
  10. 10.
    Wang L, Shi JL, Gao JH, Yan DS (2001) J Eur Ceram Soc 21:1213CrossRefGoogle Scholar
  11. 11.
    Tan KM (1982) Principles of soil chemistry. Marcel Dekker Inc., New York, p 43Google Scholar
  12. 12.
    Chokraborty AK (2003) J Therm Anal Calorim 71:799CrossRefGoogle Scholar
  13. 13.
    Chakravorty AK (1994) J Mater Sci 29:1558. doi: https://doi.org/10.1007/BF00368926 CrossRefGoogle Scholar
  14. 14.
    Palko JW, Sayir A, Sinogeikin SV, Kriven WM, Bass JD (2002) J Am Ceram Soc 85(8):2005CrossRefGoogle Scholar
  15. 15.
    Soboyejo WO, Mercer C, Schymanski J, van der Laan SR (2001) J Am Ceram Soc 84(6):1309CrossRefGoogle Scholar
  16. 16.
    Kamigaito O, Kamiya N (1979) J Mater Sci 14:573. doi: https://doi.org/10.1007/BF00772716 Google Scholar
  17. 17.
    Davidge RW (1986) Mechanical behaviour of ceramics. Cambridge University Press, London, p 320Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of NairobiNairobiKenya

Personalised recommendations