Advertisement

Journal of Materials Science

, Volume 43, Issue 10, pp 3522–3530 | Cite as

Microstructure development in Nb3Sn(Ti) internal tin superconducting wire

  • I. Pong
  • S. C. Hopkins
  • X. Fu
  • B. A. Glowacki
  • J. A. Elliott
  • A. Baldini
Article

Abstract

The authors have studied the phase formation sequences in a Nb3Sn ‘internal tin’ process superconductor. Heat treatments were performed to convert the starting materials of tin, Ti–Sn, copper and niobium, to bronze and Nb3Sn. Specimens were quenched at different points of the heat treatment, followed by metallography to identify the phases present and X-ray microtomography (XMT) to investigate the void volume and distribution. An unexpected observation of the microstructure development was the uphill diffusion of tin during the Cu–Sn reactive diffusion. Some defects likely to affect the superconducting performance of the wires were observed. Microscopy revealed the presence of a Ti–Sn intermetallic compound displacing the niobium filaments, and XMT revealed the formation of long pores in the longitudinal direction. Two types of pore formation mechanism, in addition to Kirkendall pores, are proposed. The phase and microstructure development suggests that low-temperature heat treatment (below 415 °C) will have significant influence on optimising the final superconducting properties.

Keywords

Critical Current Density Heat Treatment Schedule Bronze Matrix Niobium Filament CuSnTi 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Ian Pong would like to thank the Croucher Foundation, Hong Kong, and Simon Hopkins the EPSRC, for financial support.

References

  1. 1.
    Yoshizaki K, Taguchi O, Fujiwara F, Imaizumi M, Wakata M, Hashimoto Y, Wakamoto K, Yamada T, Satow T (1983) IEEE Trans Magn 19:1131CrossRefGoogle Scholar
  2. 2.
    Fischer CM, Lee PJ, Larbalestier DC (2002) In: Advances in cryogenic engineering, vols 48a and b; vol 614, p 1008Google Scholar
  3. 3.
    Kaufmann AR, Pickett JJ (1971) J Appl Phys 42:58CrossRefGoogle Scholar
  4. 4.
    Suenaga M, Klamut CJ, Higuchi N, Kuroda T (1985) IEEE Trans Magn 21:305CrossRefGoogle Scholar
  5. 5.
    Yoshizaki K, Wakata M, Miyashita S, Fujiwara F, Taguchi O, Imaizumi M, Hashimoto Y (1985) IEEE Trans Magn 21:301CrossRefGoogle Scholar
  6. 6.
    Hayase T, Kajihara M (2006) Mater Sci Eng A 433:83CrossRefGoogle Scholar
  7. 7.
    Osamura K, Ochiai S, Kondo S, Namatame M, Nosaki M (1986) J Mater Sci 21:1509CrossRefGoogle Scholar
  8. 8.
    Miyashita S, Yoshizaki K, Hashimoto Y, Sekine H, Tachikawa K (1987) IEEE Trans Magn 23:629CrossRefGoogle Scholar
  9. 9.
    Naka M, Schuster JC, Nakade I, Urai S (2001) J Phase Equilib 22:352CrossRefGoogle Scholar
  10. 10.
    Godeke A (2005) Performance Boundaries in Nb3Sn Superconductors. PrintPartners Ipskamp, Enschede. ISBN 90-365-2224-2Google Scholar
  11. 11.
    Raynor GV (1944) Annotated equilibrium diagram series: No 2. The Institute of Metals, LondonGoogle Scholar
  12. 12.
    Lefranc G, Muller A (1976) J Less-Common Met 45:339CrossRefGoogle Scholar
  13. 13.
    Tan KS (2006) PhD Thesis, University of CambridgeGoogle Scholar
  14. 14.
    Pong I, Hopkins SC, Fu X, Glowacki BA, Elliott JA, Baldini A (2006) Defect Diffus Forum 258–260:294CrossRefGoogle Scholar
  15. 15.
    Muller M, Schulz H, Kirchmayr H (2005) Physica C 419:115CrossRefGoogle Scholar
  16. 16.
    Watson IG, Lee PD, Dashwood RJ, Young P (2006) Metall Mater Trans A 37A:551CrossRefGoogle Scholar
  17. 17.
    Haibel A, Scheuerlein C (2007) IEEE Trans Appl Superconduct 17:34CrossRefGoogle Scholar
  18. 18.
    Scheuerlein C, Oberli L, Michiel D, Reichert K (2006) Voids in Nb3Sn strands observed by synchrotron absorption microtomography. Poster presented at the International Cryogenic Materials Conference, 17–21 July 2006, Prague, Czech RepublicGoogle Scholar
  19. 19.
    Easton DS, Kroeger DM (1979) IEEE Trans Magn 15:178CrossRefGoogle Scholar
  20. 20.
    Scheuerlein C, Di Michiel M, Haibel A (2007) Appl Phys Lett 90:132510CrossRefGoogle Scholar
  21. 21.
    Dietderich DR, Glazer J, Lea C, Hassenzahl WV, Morris JW (1985) IEEE Trans Magn 21:297CrossRefGoogle Scholar
  22. 22.
    Naus MT, Jewell MC, Lee PJ, Larbalestier DC (2002) In: Advances in cryogenic engineering, AIP conference proceedings, vols 48a and b; vol 614. Amer Inst Physics, Melville, NY, ISBN 0-7354-0060-1, p 1016Google Scholar
  23. 23.
    Acharya NN (2001) J Mater Sci 36:4779CrossRefGoogle Scholar
  24. 24.
    Darken LS (1949) Trans Am Inst Minerals 180:430Google Scholar
  25. 25.
    Park H, Lee DN (2003) Metall Mater Trans A 34:531CrossRefGoogle Scholar
  26. 26.
    Dyson BF, Anthony TR, Turnbull D (1967) J Appl Phys 38:3408CrossRefGoogle Scholar
  27. 27.
    Suenaga M, Horigami O, Luhman TS (1974) Appl Phys Lett 25:624CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • I. Pong
    • 1
  • S. C. Hopkins
    • 1
  • X. Fu
    • 1
  • B. A. Glowacki
    • 1
  • J. A. Elliott
    • 1
  • A. Baldini
    • 2
  1. 1.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK
  2. 2.Outokumpu Copper SuperconductorsFornaci Di BargaItaly

Personalised recommendations