Advertisement

Journal of Materials Science

, Volume 43, Issue 9, pp 3305–3313 | Cite as

Compressive properties of Cu with different grain sizes: sub-micron to nanometer realm

  • Akhtar S. Khan
  • Babak Farrokh
  • Laszlo Takacs
Article

Abstract

High-quality ultra-fine grained (ufg) and nanocrystalline (nc) bulk Cu samples of proper sizes reliable for mechanical testing, with grain sizes (d) ranging from 720 down to 22 nm were prepared by means of room temperature ball-milling and consolidation processes. The specimens were subjected to compressive loading at the quasi-static strain rate of 10−4 s−1 to large strains (ε = 50%). The specimens prepared from the 10-h-milled powder (d = 32 nm) were tested at a wide range of strain rates (10−4 to 1,860 s−1), and the strain rate sensitivity (SRS) of the material was determined as a function of strain. The strength and work-hardening behavior were dramatically influenced by change in the grain size; the strength approached ∼900 MPa for the 30-h-milled Cu (d = 22 nm) at the strain level of ∼50%. The SRS increased several fold as the grain size was reduced to 32 nm. Further, the results obtained in this study were compared with those of other investigators on ufg and nc Cu, to gain insights into the effect of different processing routes on the investigated material properties.

Keywords

Strain Rate Sensitivity Consolidation Process Equal Channel Angular Extrusion Process Control Agent Consolidate Sample 

Notes

Acknowledgement

The co-author, Babak Farrokh, gratefully acknowledges the support from the U.S. Department of Education through the Graduate Assistance in Areas of National Need (GAANN) Fellowship.

References

  1. 1.
    Gleiter H (1981) Materials with ultrafine grain size. In: Hansen N (ed) Deformation of polycrystals: mechanisms and microstructures. Risø National Laboratory, Roskilde, p 15Google Scholar
  2. 2.
    Meyers MA, Mishra A, Benson DJ (2006) Prog Mater Sci 51:427CrossRefGoogle Scholar
  3. 3.
    Chen J, Lu L, Lu K (2006) Scripta Mater 44:1913CrossRefGoogle Scholar
  4. 4.
    Meyers MA, Mishra A, Benson DJ (2006) JOM 58:41CrossRefGoogle Scholar
  5. 5.
    Wang YM, Ma E (2003) Appl Phys Lett 83:3165CrossRefGoogle Scholar
  6. 6.
    Cheng S, Ma E, Wang YM, Kecskes LJ, Youssef KM, Koch CC, Trociewitz UP, Han K (2005) Acta Mater 53:1521CrossRefGoogle Scholar
  7. 7.
    Wei X, Lee D, Shim S, Chen X, Kysar JW (2007) Scripta Mater 57:541Google Scholar
  8. 8.
    Champion Y, Guérin-Mailly S, Bonnentien JL, Langlois P (2001) Scripta Mater 44:1609CrossRefGoogle Scholar
  9. 9.
    Youngdahl CJ, Sanders PG, Eastman JA, Weertman JR (1997) Scripta Mater 37:809CrossRefGoogle Scholar
  10. 10.
    Wang YM, Ma E (2004) Mater Sci Eng A 375–377:46CrossRefGoogle Scholar
  11. 11.
    Wang YM, Ma E (2004) Acta Mater 52:1699CrossRefGoogle Scholar
  12. 12.
    Gray GT III, Lowe TC, Cady CM, Valiev RZ, Aleksandrov IV (1997) Nanostruc Mater 9:477CrossRefGoogle Scholar
  13. 13.
    Suryanarayanan Iyer R, Frey CA, Sastry SML, Waller BE, Bhuro WE (1999) Mater Sci Eng A 264:210CrossRefGoogle Scholar
  14. 14.
    Suryanarayanan R, Frey CA, Sastry SML, Waller BE, Bates SE, Buhro WE (1996) J Mater Res 11:439CrossRefGoogle Scholar
  15. 15.
    Suryanarayanan R, Frey CA, Sastry SML, Waller BE, Buhro WE (1996) Deformation behavior of nanocrystalline Cu and Cu–0.2 wt%B produced by hot pressing of solution phase synthesis. In: Suryanarayana C, Singh J, Froes H (eds) Processing and properties of nanocrystalline materials, p 407Google Scholar
  16. 16.
    Valiev RZ, Kozlov EV, Ivanov YF, Lian J, Nazarov AA, Baudelet B (1994) Acta Metall Mater 42:2467CrossRefGoogle Scholar
  17. 17.
    Khan AS, Zhang H, Takacs L (2000) Int J Plast 16:1459CrossRefGoogle Scholar
  18. 18.
    Haouaoui M, Karman I, Maier HJ, Hartwig KT (2004) Metall Mater Trans A 35:2935CrossRefGoogle Scholar
  19. 19.
    Mercier S, Molinari A, Estrin Y (2007) J Mater Sci 42:1455CrossRefGoogle Scholar
  20. 20.
    Conrad H (2003) Mater Sci Eng A 341:216CrossRefGoogle Scholar
  21. 21.
    Wei Y, Su C, Anand L (2006) Acta Mater 54:3177CrossRefGoogle Scholar
  22. 22.
    Schiøtz J (2004) Scripta Mater 51:837CrossRefGoogle Scholar
  23. 23.
    Lian J, Baudelet B, Nazarov AA (1993) Mater Sci Eng A 172:23CrossRefGoogle Scholar
  24. 24.
    Pande CS, Masumura RA, Marsh SP (1997) Acta Mater 45:4361CrossRefGoogle Scholar
  25. 25.
    Jiang B, Weng GJ (2004) J Mech Phys Solids 52:1125CrossRefGoogle Scholar
  26. 26.
    Fu HH, Benson DJ, Meyers MA (2004) Acta Mater 52:4413CrossRefGoogle Scholar
  27. 27.
    Weertman JR (2002) In: Koch CC (ed) Nanostructured materials: processing, properties and applications. William Andrews Publishing, Norwich (NY), p 397Google Scholar
  28. 28.
    Sanders PG, Youngdahl CJ, Weertman JR (1997) Mater Sci Eng A 234:77CrossRefGoogle Scholar
  29. 29.
    Krstic V, Erb U, Palumbo (1993) Scripta Mater 29:1501CrossRefGoogle Scholar
  30. 30.
    Nieman GW, Weertman JR, Siegel RW (1991) J Mater Res 6:1012CrossRefGoogle Scholar
  31. 31.
    Sanders PG, Eastman JA, Weertman JR (1997) Acta Mater 10:4019CrossRefGoogle Scholar
  32. 32.
    Koch CC (2003) Scripta Mater 49:657CrossRefGoogle Scholar
  33. 33.
    Youssef KM, Scattergood RO, Murty KL, Koch CC (2004) Appl Phys Lett 85:929CrossRefGoogle Scholar
  34. 34.
    Youssef KM, Scattergood RO, Murty KL, Horton JA, Koch CC (2005) Appl Phys Lett 87:091904-1CrossRefGoogle Scholar
  35. 35.
    Khan AS, Zhang H (2000) Int J Plast 16:1477CrossRefGoogle Scholar
  36. 36.
    Khan AS, Suh YS, Chen X, Takacs L, Zhang H (2006) Int J Plast 22:195CrossRefGoogle Scholar
  37. 37.
    Groza JR (2002) In: Koch CC (eds) Nanostructured materials: processing, properties, and applications. Noyes Publication, Norwich (NY), p 115, (Chap 4)Google Scholar
  38. 38.
    Ko SH, Jang JM, Lee W (2005) Mater Sci Forum 475–479:3489CrossRefGoogle Scholar
  39. 39.
    Suryanarayana C (2004) Mechanical alloying and milling. Marcel Dekker, New York (NY), p 385, (Chap 15)Google Scholar
  40. 40.
    El-Eskandarany S, Aoki M, Itoh K, Suzuki K (1991) J Less Common Metals 169:235CrossRefGoogle Scholar
  41. 41.
    Khan AS, Farrokh B (2006) Int J Plast 22:1506CrossRefGoogle Scholar
  42. 42.
    Khan AS, Kazmi R, Farrokh B, Zupan M (2007) Int J Plast 23:1105CrossRefGoogle Scholar
  43. 43.
    Khan AS, Liang R (1999) Int J Plast 15:1089CrossRefGoogle Scholar
  44. 44.
    Mishura JC, Suryanarayana C, Froes HF, ID (1994) University of Idaho. In: Mechanical alloying and milling. C. Suryanarayana (2004), author. Marcel Dekker, p 400Google Scholar
  45. 45.
    Gaffet E, Harmelin M, Faudot F (1993) J Alloys Compd 194:23CrossRefGoogle Scholar
  46. 46.
    Tanner AB, McGinty RD, McDowell DL (1999) Int J Plast 15:575CrossRefGoogle Scholar
  47. 47.
    Guduru RK, Murty KL, Youssef KM, Scattergood RO, Koch CC (2007) Mater Sci Eng A 463:14CrossRefGoogle Scholar
  48. 48.
    Wang Y, Chen M, Zhou F, Ma E (2002) Nature 419:912CrossRefGoogle Scholar
  49. 49.
    Ma E (2003) Scripta Mater 49:663CrossRefGoogle Scholar
  50. 50.
    Smirnov BI, Shpeizman VV, Nikolaev VI (2005) Phys Solid State 47:840CrossRefGoogle Scholar
  51. 51.
    Meyers MA, Chawla KK (1999) Mechanical behavior of materials. Prentice-Hall, Upper Saddle River (NJ), p 271Google Scholar
  52. 52.
    Wei Q (2007) J Mater Sci 42:1709CrossRefGoogle Scholar
  53. 53.
    Lu L, Li SX, Lu K (2001) Scripta Mater 45:1163CrossRefGoogle Scholar
  54. 54.
    Wei Q, Cheng S, Ramesh KT, Ma E (2004) Mater Sci Eng A 381:71CrossRefGoogle Scholar
  55. 55.
    Elmustafa AA, Tambwe MF, Stone DS (2003) MRS Symp Proc 70:Y8.14.1Google Scholar
  56. 56.
    Carreker RP Jr, Hibbard WR Jr (1953) Acta Metall 1:654CrossRefGoogle Scholar
  57. 57.
    Zehetbauer M, Seumer V (1993) Acta Metall 41:577CrossRefGoogle Scholar
  58. 58.
    Bochniak W (1995) Acta Metall 43:225Google Scholar
  59. 59.
    Lu L, Schwaiger R, Shan ZW, Dao M, Lu K, Suresh S (2005) Acta Mater 53:2169CrossRefGoogle Scholar
  60. 60.
    Torre FD, Pereloma EV, Davies CHJ (2006) Acta Mater 54:1135CrossRefGoogle Scholar
  61. 61.
    Elmustafa AA, Tambwe MF, Stone DS. Activation volume analysis of plastic deformation in fcc materials using nanoindentation. Presented at surface engineering 2002-synthesis, characterization and applications, MRS Fall Meeting, Boston, MAGoogle Scholar
  62. 62.
    Valiev RZ, Alexandrov IV, Zhu YT, Lowe TC (2002) J Mater Res 17:5CrossRefGoogle Scholar
  63. 63.
    Li YJ, Blum W (2005) Phys Status Solidi A 202:R119CrossRefGoogle Scholar
  64. 64.
    Jiang Z, Liu X, Li G, Jiang Q, Lian J (2006) Appl Phys Lett 88:14115-1Google Scholar
  65. 65.
    Miyamoto H, Ota K, Mimaki T (2006) Scripta Mater 54:1721CrossRefGoogle Scholar
  66. 66.
    Hoppel HW, May J, Eisenlohr P, Goken M (2005) Zeit fur Metallkunde 96:566CrossRefGoogle Scholar
  67. 67.
    Pan D, Nieh TG, Chen MW (2006) Appl Phys Lett 88:1119Google Scholar
  68. 68.
    Wang YM, Hamza AV, Ma E (2006) Acta Mater 54:2715CrossRefGoogle Scholar
  69. 69.
    Jiang HG, Zhu YT, Butt DP, Alexandrov IV, Lowe TC (2000) Mater Sci Eng A 290:128CrossRefGoogle Scholar
  70. 70.
    Das D, Samanta A, Chattopadhyay (2006) Synth React Inorg, Metal-Organ Nano-Metal Chem 36:221CrossRefGoogle Scholar
  71. 71.
    Chokshi H, Rosen A, Karch J, Gleiter H (1989) Scripta Metall 23:1679CrossRefGoogle Scholar
  72. 72.
    Ganapathi SK, Aindow M, Fraser HL, Rigney DA (1991) MRS Symp Proc 206:593CrossRefGoogle Scholar
  73. 73.
    Shen TD, Koch CC, Tsui TY, Pharr GM (1995) J Mater Res 10:2892CrossRefGoogle Scholar
  74. 74.
    Fougere GR, Weertman JR, Siegel RW, Kim S (1992) Scr Metall 26:1879CrossRefGoogle Scholar
  75. 75.
    Tabor D (1951) J Inst Metals 79:1Google Scholar
  76. 76.
    Gerk AP (1997) J Mater Sci 12:735CrossRefGoogle Scholar
  77. 77.
    Dao M, Lu L, Asaro RJ, De Hosson JTM, Ma E (2007) Acta Mater 55:4041CrossRefGoogle Scholar
  78. 78.
    Carlton CE, Ferreira PJ (2007) Acta Mater 55:3749CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of Maryland Baltimore CountyBaltimoreUSA
  2. 2.Department of PhysicsUniversity of Maryland Baltimore CountyBaltimoreUSA

Personalised recommendations