Advertisement

Journal of Materials Science

, Volume 43, Issue 9, pp 3149–3152 | Cite as

Electrochemical investigation of silicon/carbon composite as anode material for lithium ion batteries

  • Pengjian Zuo
  • Zhenbo Wang
  • Geping Yin
  • Dechang Jia
  • Xinqun Cheng
  • Chunyu Du
  • Pengfei Shi
Article

Abstract

Silicon-graphite composites were prepared by mechanical ball milling for 20 h under argon protection. The microstructure and electrochemical performance of the composites were characterized by X-ray diffraction (XRD), scanning electron microscopy, and electrochemical experiments. XRD showed that the materials prepared by ball milling were composites consisting of Si and graphite powders. The composite electrode showed the best performance, especially when annealed at 200 °C for 2 h, which had a reversible capacity of 595 mAh g−1 and an initial coulombic efficiency of 66%, and still retained 469 mAh g−1 after 40 cycles with about 0.6% capacity loss per cycle.

Keywords

Anode Material Composite Electrode Coulomb Efficiency Reversible Capacity High Reversible Capacity 

Notes

Acknowledgements

This work was partially supported by The Natural Science Foundation of China (no. 20673032) and the Key Scientific & Technological Programme of Heilongjiang Province of China (no. GB06A309).

References

  1. 1.
    Fong R, Sacken UV, Dahn JR (1990) J Electrochem Soc 137:2009CrossRefGoogle Scholar
  2. 2.
    Yang HX, Ai XP, Lei M, Li SX (1993) J Power Sources 43–44:399CrossRefGoogle Scholar
  3. 3.
    Dahn JR, Fong R, Spoon MJ (1990) Phys Rev B 42:6424CrossRefGoogle Scholar
  4. 4.
    Endo M, Nakamura JI, Sasabe Y, Takahashi T, Inagaki M (1994) TANSO 165:282CrossRefGoogle Scholar
  5. 5.
    Huggins RA (1999) J Power Sources 81–82:13CrossRefGoogle Scholar
  6. 6.
    Winter M, Besenhard JO (1999) Electrochim Acta 45:31CrossRefGoogle Scholar
  7. 7.
    Beaulieu LY, Hewitt KC, Turner RL, Bonakdarpour A, Abdo AA, Christensen L, Eberman KW, Krause LJ, Dahn JR (2003) J Electrochem Soc 150:A149CrossRefGoogle Scholar
  8. 8.
    Li H, Huang X, Chen L, Zhou G, Zhang Z, Yu D, Mo Y, Pei N (2000) Solid State Ionics 135:181CrossRefGoogle Scholar
  9. 9.
    Hatchard TD, Topple JM, Fleischauer MD, Dahn JR (2003) Electrochem Solid State Lett 6:A129CrossRefGoogle Scholar
  10. 10.
    Obrovac MN, Christensen L (2004) Electrochem Solid-State Lett 7:A93CrossRefGoogle Scholar
  11. 11.
    Zuo P, Yin G (2006) J Alloys Compd 414:265CrossRefGoogle Scholar
  12. 12.
    Anani A, Huggins RA (1992) J Power Sources 38:363CrossRefGoogle Scholar
  13. 13.
    Moriga T, Watanabe K, Tsuji D, Massaki S, Nakabayashi I (2000) J Solid State Chem 153:386CrossRefGoogle Scholar
  14. 14.
    Wang GX, Sun L, Bradhurst DH, Zhong S, Dou SX, Liu HK (2000) J Alloys Compd 306:249CrossRefGoogle Scholar
  15. 15.
    Yang J, Wang BF, Wang K, Liu Y, Xie JY, Wen ZS (2003) Electrochem Solid State Lett 6:A154CrossRefGoogle Scholar
  16. 16.
    Nga SH, Wang J, Konstantinov K, Wexler D, Chew SY, Guo ZP, Liu HK (2007) J Power Sources 174:823CrossRefGoogle Scholar
  17. 17.
    Zuo PJ, Yin GP, Zhao J, Ma YL, Cheng XQ, Shi PF, Tamamura T (2006) Electrochim Acta 52:1527CrossRefGoogle Scholar
  18. 18.
    Zuo PJ, Yin GP, Hao XF, Yang ZL, Ma YL, Gao ZG (2007) Mater Chem Phys 104:444CrossRefGoogle Scholar
  19. 19.
    Zuo PJ, Yin GP, Ma YL (2007) Electrochim Acta 52:4878CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Pengjian Zuo
    • 1
    • 2
  • Zhenbo Wang
    • 2
  • Geping Yin
    • 2
  • Dechang Jia
    • 1
  • Xinqun Cheng
    • 2
  • Chunyu Du
    • 2
  • Pengfei Shi
    • 2
  1. 1.Postdoctoral Station of Materials Science and Engineering, School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.Department of Applied ChemistryHarbin Institute of TechnologyHarbinChina

Personalised recommendations