Advertisement

Journal of Materials Science

, Volume 43, Issue 6, pp 1939–1947 | Cite as

Supercritical CO2 processing of polymers for the production of materials with applications in tissue engineering and drug delivery

  • Ana M. López-Periago
  • Arlette Vega
  • Pascale Subra
  • Anna Argemí
  • Javier Saurina
  • Carlos A. García-González
  • Concepcion Domingo
Article

Abstract

Supercritical carbon dioxide (SCCO2) was used for the preparation of foamed sponges and intermingled fibers of biopolymers with potential applications in tissue engineering and drug delivery. The work was focused on the processing of both biodegradable polylactic acid (l-PLA) and non-biodegradable polymethylmethacrylate (PMMA) homopolymers. Monolithic porous sponges of amorphous PMMA were prepared using SCCO2 as a porogen agent by simple swelling and foaming. Under similar experimental conditions, l-PLA was crystallized. The study also addresses the impregnation of biopolymers with an active agent dispersed in SCCO2. The drug used for impregnation was triflusal, a platelet antiaggregant inhibitor for thrombogenic cardiovascular diseases. Foaming often leads to a closed pore structure after depressurization which is disadvantageous for 3D scaffolds as it does not fulfill the requirement of interconnectivity necessary for cell migration. To overcome these drawbacks, fibers forming macroporous structures were prepared using a semicontinuous antisolvent (SAS) technique.

Keywords

Foam PMMA Supercritical Carbon Dioxide Semicrystalline Polymer Triflusal 

Notes

Acknowledgements

The financial support of EU Project STRP SurfaceT NMP2-CT-2005-013524 and the Spanish MEC (projects MAT2005-25567-E, MAT-2006-28189-E and MAT2005-25503-E) are greatly acknowledged. A. M. Lopez-Periago and C. A. García-González give acknowledgment to CSIC for its funding support through I3P fellowships.

References

  1. 1.
    Hutmacher DW (2000) Biomaterials 21:2529CrossRefGoogle Scholar
  2. 2.
    Burg KJL, Porter S, Kellam JF (2000) Biomaterials 21:2347CrossRefGoogle Scholar
  3. 3.
    Shin H, Jo S, Mikos AG (2003) Biomaterials 24:4353CrossRefGoogle Scholar
  4. 4.
    Liu X, Ma PX (2004) Ann Biomed Eng 32(3):477CrossRefGoogle Scholar
  5. 5.
    Whang K, Thomas CH, Healy KE, Nuber G (1995) Polymer 36:837CrossRefGoogle Scholar
  6. 6.
    Zhang Y, Lim CT, Ramakrishna S, Huang Z-M (2005) J Mater Sci Mater Med 16:933CrossRefGoogle Scholar
  7. 7.
    Tuzlakoglu K, Bolgen N, Salgado AJ, Gomes ME, Piskin E, Reis RL (2005) J Mater Sci Mater Med 16:1099CrossRefGoogle Scholar
  8. 8.
    Cooper JA, Lu HH, Ko FK, Freeman JW, Laurencin CT (2005) Biomaterials 26:1523CrossRefGoogle Scholar
  9. 9.
    Chen VJ, Ma PX (2004) Biomaterials 25:2065CrossRefGoogle Scholar
  10. 10.
    Robinson JR, Lee VHL (1987) Controlled drug delivery: fundamentals and applications, 2nd edn. Marcel Dekker, New YorkCrossRefGoogle Scholar
  11. 11.
    Beckman EJ (2004) J Supercrit Fluids 28:121CrossRefGoogle Scholar
  12. 12.
    Tomasko DL, Li H, Liu D, Han X, Wingert MJ, Lee LJ, Koelling KW (2003) Ind Eng Chem Res 42:6431CrossRefGoogle Scholar
  13. 13.
    Cooper AI (2000) J Mater Chem 10:207CrossRefGoogle Scholar
  14. 14.
    Kazarian SG (2000) Polymer Sci Ser 42:78Google Scholar
  15. 15.
    Cooper AI (2003) Adv Mater 15:1049CrossRefGoogle Scholar
  16. 16.
    Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer R (1996) Biomaterials 17:1417CrossRefGoogle Scholar
  17. 17.
    Quirk RA, France RM, Shakesheff KM, Howdle SM (2004) Curr Opin Solid State Mater Sci 8:313CrossRefGoogle Scholar
  18. 18.
    Howdle SM, Watson MS, Whitaker MJ, Popov VK, Davies MC, Mandel FS, Don Wang J, Shakesheff KM (2001) Chem Commun 1:109CrossRefGoogle Scholar
  19. 19.
    Xu Q, Chang Y (2004) J Appl Polym Sci 93:742CrossRefGoogle Scholar
  20. 20.
    Perrut M, Jung J, Leboeuf F (2005) Int J Pharm 288:11CrossRefGoogle Scholar
  21. 21.
    Kazarian SG, Martirosyan GG (2002) Int J Pharm 232:81CrossRefGoogle Scholar
  22. 22.
    Sheridan MH, Shea LD, Peters MC, Mooney DJ (2000) J Control Release 64:91CrossRefGoogle Scholar
  23. 23.
    Kikic I, Vecchione F (2003) Curr Opin Solid State Mater Sci 7(4–5):399CrossRefGoogle Scholar
  24. 24.
    Woods HM, Silva MCG, Nouvel C, Shakesheff KM, Howdle SM (2004) J Mater Chem 14:1663CrossRefGoogle Scholar
  25. 25.
    Vega-González A, Domingo C, Elvira C, Subra P (2004) J Appl Polym Sci 91:2422CrossRefGoogle Scholar
  26. 26.
    Reverchon E, Antonacci A (2007) J Supercrit Fluids 39:444CrossRefGoogle Scholar
  27. 27.
    Thies J, Müller BW (1998) Eur J Pharm Biopharm 45:67CrossRefGoogle Scholar
  28. 28.
    Randolph TW, Randolph AD, Mebes M, Yeung S (1993) Biotechnol Prog 9:429CrossRefGoogle Scholar
  29. 29.
    Sproule TL, Lee JA, Li H, Lannutti JJ, Tomasko DL (2004) J Supercrit Fluids 28:241CrossRefGoogle Scholar
  30. 30.
    Elvira C, Fanovich A, Fernandez M, Fraile J, San Roman J, Domingo C (2004) J Control Release 99:231CrossRefGoogle Scholar
  31. 31.
    Muth O, Hirth Th, Vogel H (2000) J Supercrit Fluids 17:65CrossRefGoogle Scholar
  32. 32.
    Condo PD, Johnston KP (1992) Macromolecules 25:6730CrossRefGoogle Scholar
  33. 33.
    Üzer S, Akman U, Hortaçsu Ö (2006) J Supercrit Fluids 38:119CrossRefGoogle Scholar
  34. 34.
    Kazarian S, Vincent MF, Bright FV, Liotta CL, Eckert CA (1996) J Am Chem Soc 118:1729CrossRefGoogle Scholar
  35. 35.
    Wissinger RG, Paulatis ME (1987) J Polym Sci Part B Polym Phys 25:2497CrossRefGoogle Scholar
  36. 36.
    Pantoula M, Panayiotou C (2006) J Supercrit Fluids 37:254CrossRefGoogle Scholar
  37. 37.
    Goel SK, Beckman EJ (1994) Polym Eng Sci 34:1148CrossRefGoogle Scholar
  38. 38.
    Barry JJA, Gidda HS, Scotchford CA, Howdle SM (2004) Biomaterials 25:3559CrossRefGoogle Scholar
  39. 39.
    Krause B, Mettinkhof R, van der Vegt NFA, Wessling M (2001) Macromolecules 34:874CrossRefGoogle Scholar
  40. 40.
    Sheridan MH, Shea LD, Peters MC, Mooney DJ (2000) J Control Release 64:91CrossRefGoogle Scholar
  41. 41.
    Takada M, Hasegawa S, Ohshima M (2001) Polym Eng Sci 41:1938CrossRefGoogle Scholar
  42. 42.
    Fischer EW, Sterzel HJ, Wegner G (1973) Colloid Polym Sci 251:1980Google Scholar
  43. 43.
    Nalawade SP, Picchioni F, Janssen LPBM (2006) Prog Polym Sci 31:19CrossRefGoogle Scholar
  44. 44.
    Nauman EB, Ariyapadi MV, Balsara MV, Grocela TA, Furno JS, Liu SH, Mallikarjun R (1988) Chem Eng Commun 66:29CrossRefGoogle Scholar
  45. 45.
    Baldwin SP, Saltzman WM (1998) Adv Drug Deliv Rev 33:71CrossRefGoogle Scholar
  46. 46.
    Karageorgiou V, Kaplan D (2005) Biomaterials 26:5474CrossRefGoogle Scholar
  47. 47.
    Moroni L, de Wijn JR, Blitterswijk CA (2006) Biomaterials 27:974CrossRefGoogle Scholar
  48. 48.
    Bodmeier R, Wang H, Dixon DJ, Mawson S, Johnston KP (1995) Pharm Res 12:1211CrossRefGoogle Scholar
  49. 49.
    Elvassore N, Baggio M, Pallado P, Bertucco A (2001) Biotechnol Bioeng 73:449CrossRefGoogle Scholar
  50. 50.
    Dixon DJ, Johnston KP (1993) J Appl Polym Sci 50:1929CrossRefGoogle Scholar
  51. 51.
    Gentleman E, Lay AN, Dickerson DA, Nauman EA, Livesay GA, Dee KC (2003) Biomaterials 24:3805CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ana M. López-Periago
    • 1
  • Arlette Vega
    • 2
  • Pascale Subra
    • 2
  • Anna Argemí
    • 3
  • Javier Saurina
    • 3
  • Carlos A. García-González
    • 1
  • Concepcion Domingo
    • 1
  1. 1.Instituto de Ciencia de Materiales de Barcelona, CSICBellaterraSpain
  2. 2.Laboratoire d’Ingénierie des Matériaux et des Hautes Pressions, C.N.R.S.Institut Galilée, Université Paris 13VilletaneuseFrance
  3. 3.Department of Analytical ChemistryUniversity of BarcelonaBarcelonaSpain

Personalised recommendations