Journal of Materials Science

, Volume 43, Issue 6, pp 1974–1978 | Cite as

Morphology control in synthesis of nickel nanoparticles in the presence of polyvinylpyrrolidone (PVPK30)

  • Dayong Liu
  • Shan RenEmail author
  • Hui Wu
  • Qingtang Zhang
  • Lishi Wen


Nickel nanoparticles with different morphologies have been synthesized with polyvinylpyrrolidone (PVPK30) as structure-directing agent through a chemical reduction process. SEM, TEM and selected-area electron diffraction (SAED) were employed in the analysis of morphological characteristics of nickel nanoparticles. It was found that nickel nanoparticles are formed by the aggregation of nanoscale nickel crystallites, and particle morphology was strongly dependent on the PVPK30 concentration. In addition, crystallite size and formation time of nickel nanoparticles increased with the increasing PVPK30 concentration. PVPK30 additive seems to influence the three steps of nickel particle precipitation: nucleation, crystal growth and aggregation. The resultant spherical nickel nanoparticles showed high coercivity.


Nickel Crystallite Size Formation Time Nickel Particle Nickel Powder 



This research was financially supported by both the Science & Technology project of Guangzhou city and the Science & Technology Department of Guangdong Province, China.


  1. 1.
    Duan YW, Li JG (2004) Mater Chem Phys 87:452CrossRefGoogle Scholar
  2. 2.
    Hirai H, Yakura N (2001) Polym Adv Technol 12:724CrossRefGoogle Scholar
  3. 3.
    Levi G, Scheu C, Kaplan WD (2001) Interf Sci 9:213CrossRefGoogle Scholar
  4. 4.
    Lee JY, Lee JH, Hong SH, Lee YK, Choi JY (2003) Adv Mater 15:1655CrossRefGoogle Scholar
  5. 5.
    Kim KH, Lee YB, Choi EY, Park HC, Park SS (2004) Mater Chem Phys 86:420CrossRefGoogle Scholar
  6. 6.
    Cordente N, Respaud M, Senocq F, Casanove MJ, Amiens C, Chaudret B (2001) Nano Lett 1:565CrossRefGoogle Scholar
  7. 7.
    Franquin D, Monteverdi S, Molina S, Bettahar MM, Fort Y (1999) J Mater Sci 34:4481. doi: CrossRefGoogle Scholar
  8. 8.
    Chou KS, Huang KC (2001) J Nanoparticles Res 3:127CrossRefGoogle Scholar
  9. 9.
    Kim KH, Lee YB, Lee SG, Park HC, Park SS (2004) Mater Sci Eng A 381:337CrossRefGoogle Scholar
  10. 10.
    Kurinec SK, Okeke N, Gupta SK, Zhang H, Xiao TD (2006) J Mater Sci 41:8181. doi: CrossRefGoogle Scholar
  11. 11.
    Yu KN, Kim DJ, Chung HS, Liang HZ (2003) Mater Lett 57:3992CrossRefGoogle Scholar
  12. 12.
    Couto GG, Klein JJ, Schreiner WH, Mosca DH, de Oliveira AJA, Zarbin AJG (2007) J Colloid Interf Sci 311:461CrossRefGoogle Scholar
  13. 13.
    Ni XM, Zhao QB, Zhang DG, Yang DD, Zheng HG (2005) J Cryst Growth 280:217CrossRefGoogle Scholar
  14. 14.
    Li D, Komarneni S (2006) J Am Ceram Soc 89:1510CrossRefGoogle Scholar
  15. 15.
    Bao J, Liang Y, Xu Z, Si L (2003) Adv Mater 15:1832CrossRefGoogle Scholar
  16. 16.
    Jongen N, Bowen P, Lemaitre J, Valmalette JC, Hofmann H (2000) J Colloid Interf Sci 226:189CrossRefGoogle Scholar
  17. 17.
    Ni XM, Zhang YF, Song JM, Zheng HG (2007) J Cryst Growth 299:365CrossRefGoogle Scholar
  18. 18.
    Zhang ZT, Zhao B, Hu LM (1996) J Solid State Chem 121:105CrossRefGoogle Scholar
  19. 19.
    Rivas BL, Pereira ED, Villoslada IM (2003) Prog Polym Sci 28:173CrossRefGoogle Scholar
  20. 20.
    Van der Put PJ (1998) In: The inorganic chemistry of materials: how to make things out of elements. Plenum, New York, pp 278Google Scholar
  21. 21.
    Sun YG, Xia YN (2002) Science 298:2176CrossRefGoogle Scholar
  22. 22.
    Yoon M, Kim Y, Kim YM, Volkov V, Song HJ, Park YJ, Park I-W (2005) Mater Chem Phys 91:104CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Dayong Liu
    • 1
  • Shan Ren
    • 1
    Email author
  • Hui Wu
    • 1
  • Qingtang Zhang
    • 1
  • Lishi Wen
    • 1
  1. 1.The Center for Nanotechnology Research, State Key Laboratory of Optoelectronic Material and Technologies, School of Physical Science and TechnologySun Yat-Sen UniversityGuangzhouP.R. China

Personalised recommendations