Advertisement

Journal of Materials Science

, Volume 43, Issue 8, pp 2708–2712 | Cite as

Magnetoelectric properties of ME particulate composites

  • D. R. Patil
  • A. D. Sheikh
  • C. A. Watve
  • B. K. ChouguleEmail author
Article

Abstract

Magnetoelectric (ME) composites are biphasic materials consisting of piezoelectric and piezomagnetic materials as the participating constituents. These ME composites when placed under external magnetic field show electrical polarization (ME output). This ME coupling is mediated by mechanical stress. In the present study, we have synthesized particulate composites of Ni0.8Cu0.2Fe2O4 and Ba0.8Sr0.2TiO3 using conventional ceramic method. The XRD identifications showed that the sintered ceramics retained the presence of distinct ferroelectric and ferrite phases. The dielectric constant was determined as a function of temperature (room temperature to 650 °C) at different test frequencies. The DC resistivity was studied as a function of temperature. The measured ME response, dielectric constant, and resistivity demonstrated strong dependence on the volume fraction of Ni0.8Cu0.2Fe2O4 in the composite. The ME voltage coefficient strongly depends on the resistivity of the composites.

Keywords

Ferrite Dielectric Constant Piezoelectric Material NiFe2O4 Ferroelectric Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The work was carried out with financial assistance from UGC, New Delhi under UGC-DRS- II Program.

References

  1. 1.
    Palkar VR, Malik SK (2005) Solid State Commun 134:783CrossRefGoogle Scholar
  2. 2.
    Tang YH, Chen XM, Li YJ, Zheng XH (2005) Mater Sci Eng B 116:150CrossRefGoogle Scholar
  3. 3.
    Ryu J, Priya S, Uchino K, Kim H (2002) J Electroceram 8:107CrossRefGoogle Scholar
  4. 4.
    Mazumder S, Battacharyya GS (2003) Mater Res Bull 38:303CrossRefGoogle Scholar
  5. 5.
    Ryu J, Carazo AV, Uchino KJ, Kim HR (2001) Jpn J Appl Phys 40:4948CrossRefGoogle Scholar
  6. 6.
    Suchtelen V (1972) Phillips Res Rep 27:28Google Scholar
  7. 7.
    Patankar KK, Mathe VL, Mahajan RP, Patil SA, Manohar Reddy R, SivaKumar KV (2001) Mater Chem Phys 72:23CrossRefGoogle Scholar
  8. 8.
    Abdelkefi H, Khemakhem H, Velu G, Carru JC, Mubll RV (2005) J Alloy Compos 399:1CrossRefGoogle Scholar
  9. 9.
    Kulkarni SR, Kanamadi CM, Patankar KK, Chougule BK (2005) J Mater Sci 40:569CrossRefGoogle Scholar
  10. 10.
    El Kony D (2004) Egypt J Solids 27(2):285Google Scholar
  11. 11.
    Feng X, Yao X (2002) J Appl Phys 92(5)Google Scholar
  12. 12.
    Kadam SL, Patanakar KK, Mathe VL, Kothale MB, Kale RB, Chougule BK (2003) Mater Chem Phys 78:684CrossRefGoogle Scholar
  13. 13.
    Pandey D, Singh N, Mishra SK (1994) Ind J Pure Appl Phys 32:616Google Scholar
  14. 14.
    Mahajan RP, Patankar KK, Patil AN, Choudhari SC, Ghatage AK, Patil SA (2000) Indian J Eng Mater Sci 7:203Google Scholar
  15. 15.
    Jhai JY, Cai N, Liu L, Lin YH, Nan CW (2003) Mater Sci Eng B 99:329CrossRefGoogle Scholar
  16. 16.
    Nan CW (1994) Phy Rev B 50:6082CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • D. R. Patil
    • 1
  • A. D. Sheikh
    • 1
  • C. A. Watve
    • 1
  • B. K. Chougule
    • 1
    Email author
  1. 1.Composite Materials Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia

Personalised recommendations