Journal of Materials Science

, Volume 43, Issue 6, pp 2072–2076 | Cite as

Large magnetoelectric coefficient in Co-fired Pb (Zr0.52Ti0.48)O3–Pb (Zn1/3Nb2/3)O3–Ni0.6Cu0.2Zn0.2Fe2O4 trilayer magnetoelectric composites

  • Rashed Adnan Islam
  • Shashank PriyaEmail author


Magnetoelectric materials possess coupling between the ferroic properties polarization, and magnetization [1, 2, 3, 4]. The interrelation between ferroelectricity and magnetization allows the magnetic control of ferroelectric properties and vice versa. Single phase magnetoelectric (ME) materials (such as Cr2O3, BiFeO3, YMnO3, etc.) suffer from the drawback that ME effect is weak [5, 6, 7]. Better alternatives are ME composites that have higher magnitudes of the ME voltage coefficient exploiting the product property of the materials [8, 9, 10]. Magnetoelectric (ME) effect in a particulate sintered composite was obtained by combining magnetostrictive and piezoelectric phases [11, 12, 13, 14, 15]. Sintered composites have many advantages, such as simplicity in synthesis, cost-effective materials and fabrication process, and better control of desired geometry. However, the ME response is low of the order of 100 mV/cm Oe. Recently, laminated magnetoelectric (ME) composites...


BiFeO3 Sintered Sample Cold Isostatic Press Voltage Coefficient Sintered Composite 



The authors gratefully acknowledge the support from Army Research Office and Department of Energy.


  1. 1.
    Wang J, Zheng H, Lofland SE, Ma Z, Ardabili LM, Zhao T, Riba LS, Shinde SR, Ogale SB, Bai F, Viehland D, Jia Y, Schlom DG, Wuttig M, Roytburd A, Ramesh R (2004) Science 303:661CrossRefGoogle Scholar
  2. 2.
    Ederer C, Spaldin N (2004) Nat Mater 3:849CrossRefGoogle Scholar
  3. 3.
    Eerenstein W, Mathur ND, Scott JF (2006) Nature 442:759CrossRefGoogle Scholar
  4. 4.
    Hur N, Park S, Sharma PA, Ahn JS, Guha S, Cheong SW (2004) Nature 429:392CrossRefGoogle Scholar
  5. 5.
    Astrov DN (1960) Sov Phys JETP 11:708Google Scholar
  6. 6.
    Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, Viehland D, Vathiyanathan V, Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wuttig M, Ramesh R (2003) Science 299:1719CrossRefGoogle Scholar
  7. 7.
    Van Aken BB, Palstra TTA, Filippetti A, Spaldin NA (2004) Nat Mater 3:164CrossRefGoogle Scholar
  8. 8.
    Zheng M, Wan JG, Wang Y, Yu H, Liu JM, Jiang XP, Nan CW (2004) J Appl Phys 95(12):8069CrossRefGoogle Scholar
  9. 9.
    Ryu J, Carazo AV, Uchino K, Kim H (2001) J Electoceram 7:17CrossRefGoogle Scholar
  10. 10.
    Flores VC, Baques DB, Flores DC, Aquino JAM (2006) J Appl Phys 99:08J503CrossRefGoogle Scholar
  11. 11.
    Van Suchetelene J (1972) Philips Res Rep 27:28Google Scholar
  12. 12.
    Weng L, Fu Y, Song S, Tang J, Li J (2007) Scripta Mater 56:465CrossRefGoogle Scholar
  13. 13.
    Ren SQ, Weng LQ, Song SH, Li F, Wan JG, Zeng M (2005) J Mater Sci 40(16):4375. doi: CrossRefGoogle Scholar
  14. 14.
    Wu D, Gong W, Deng H, Li M (2007) J Phys D: Appl Phys 40:5002CrossRefGoogle Scholar
  15. 15.
    Srinivasan G, DeVreugd CP, Flattery CS, Laletsin VM, Paddubnaya N (2004) Appl Phys Lett 85(13):2550CrossRefGoogle Scholar
  16. 16.
    Ryu J, Priya S, Uchino K, Viehland D, Kim H (2002) J Korean Ceram Soc 39:813CrossRefGoogle Scholar
  17. 17.
    Ryu J, Priya S, Uchino K, Kim H (2002) J Electroceram 8:107CrossRefGoogle Scholar
  18. 18.
    Srinivasan G, Rasmussen E, Levin B, Hayes R (2002) Phys Rev B 65:134402CrossRefGoogle Scholar
  19. 19.
    Dong SX, Zhai J, Li JF, Viehland D (2006) J Appl Phys 88:082907Google Scholar
  20. 20.
    Dong S, Zhai J, Li JF, Viehland D (2006) Appl Phys Lett 89:252904CrossRefGoogle Scholar
  21. 21.
    Islam RA, Viehland D, Priya S (2008) J Mater Sci Lett 43(4):1497CrossRefGoogle Scholar
  22. 22.
    Islam RA, Priya S (2007) J Mater Sci (submitted)Google Scholar
  23. 23.
    Islam RA, Priya S (2006) J Appl Phys Lett 89:152911CrossRefGoogle Scholar
  24. 24.
    Islam RA, Jiang JC, Priya S, Bai F, Viehland D (2007) Appl Phys Lett 91:162905CrossRefGoogle Scholar
  25. 25.
    Srinivasan G, Rasmussen E, Gallegos J, Srinivasan R, Bokhan YI, Laletin VM (2001) Phys Rev B 64:214408CrossRefGoogle Scholar
  26. 26.
    American National Standard Institute (1987) IEEE Standard on PiezoelectricityGoogle Scholar
  27. 27.
    APC International (2002) Piezoelectric ceramics: principle and applications, ISBN 0-9718744-0-9Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Materials Science and EngineeringUniversity of Texas at ArlingtonArlingtonUSA
  2. 2.Materials Science and EngineeringVirginia TechBlacksburgUSA

Personalised recommendations