Advertisement

Journal of Materials Science

, Volume 43, Issue 9, pp 3058–3071 | Cite as

Emerging biodegradable materials: starch- and protein-based bio-nanocomposites

  • Ruixiang ZhaoEmail author
  • Peter Torley
  • Peter J. Halley
Article

Abstract

This article provides a broad overview on the natural polymer-based bio-nanocomposite properties, processing and application. Bio-nanocomposites prepared with natural biopolymers, such as starch and protein, can be formed using a melt intercalation or a solvent intercalation method. Incorporation of layered silicates into the biopolymer matrices results in improved mechanical properties, water vapor barrier properties, and thermal stability of the resulting bio-nanocomposites without sacrificing biodegradability due to their nanometer size dispersion. Consequently, even though natural polymer-based bio-nanocomposite is in its infancy, it has a huge potential in the future.

Keywords

Starch Whey Protein Nanocomposite Film Layered Silicate Soybean Protein 

References

  1. 1.
    Waste online (2007). https://doi.org/www.wasteonline.org.uk. Accessed 5 April 2007
  2. 2.
    Marsh K, Bugusu B (2007) J Food Sci 72(3):39Google Scholar
  3. 3.
    ElAmin A (2006) News Headlines: Industry & markets 31/07/2006Google Scholar
  4. 4.
    Kale G, Kijchavengkul T et al (2007) Macromol Biosci 7(3):255Google Scholar
  5. 5.
    Howell SG (1992) J Hazard Mater 29(2):143Google Scholar
  6. 6.
    Cao AM (2002) China Environmental Protection Industry 1:86Google Scholar
  7. 7.
    Aguado J, Serrano D (1999) Feedstock recycling of plastic wastes. Royal Society of Chemistry Publisher, pp 20–31Google Scholar
  8. 8.
    Rhim JW, Ng PKW (2007) Crit Rev Food Sci Nutr 47(4):411Google Scholar
  9. 9.
    Monteavaro LL, da Silva EO et al (2005) J Am Oil Chem Soc 82(5):365Google Scholar
  10. 10.
    Mallapragada SK, Narasimhan B (2006) Handbook of biodegradable polymeric materials and applications, vol 1. American Scientific Publishers, pp 1–6, 154–197Google Scholar
  11. 11.
    Ray SS, Bousmina M (2005) Prog Mater Sci 50(8):962Google Scholar
  12. 12.
    Sorrentino A, Gorrasi G et al (2007) Trends Food Sci Technol 18(2):84Google Scholar
  13. 13.
    Debeaufort F, Quezada-Gallo JA et al (1998) Crit Rev Food Sci Nutr (4):299Google Scholar
  14. 14.
    Chaudhary AL, Sopade PA, Torley PJ, Halley PJ (2007) Biomacromolecules (submitted)Google Scholar
  15. 15.
    Kojima Y, Usuki A et al (1993) J Mater Res 8(5):1185Google Scholar
  16. 16.
    Lan T, Pinnavaia TJ (1994) Chem Mater 6(12):2216Google Scholar
  17. 17.
    LeBaron PC, Pinnavaia TJ (2001) Chem Mater 13(10):3760Google Scholar
  18. 18.
    Yano K, Usuki A et al (1997) J Polym Sci A Polym Chem 35(11):2289Google Scholar
  19. 19.
    Messersmith PB, Giannelis EP (1995) J Polym Sci A Polym Chem 33(7):1047Google Scholar
  20. 20.
    Hasegawa N, Kawasumi M et al (1998) J Appl Poly Sci 67(1):87Google Scholar
  21. 21.
    Alexandre M, Dubois P (2000) Mater Sci Eng R Rep 28(1–2):1Google Scholar
  22. 22.
    Carrado KA (2000) Appl Clay Sci 17(1–2):1Google Scholar
  23. 23.
    LeBaron PC, Wang Z, Pinnavaia TJ (1999) Appl Clay Sci 15(1–2):11Google Scholar
  24. 24.
    McGlashan SA, Halley PJ (2003) Polym Int 52(11):1767Google Scholar
  25. 25.
    Berglund L (2005) In: Natural fibers, biopolymers, and biocomposites. CRC Press, Boca Raton, p 808Google Scholar
  26. 26.
    Kalambur S, Rizvi SSH (2005) J Appl Poly Sci 96(4):1072Google Scholar
  27. 27.
    Kalambur SB, Rizvi SS (2004) Polym Int 53(10):1413Google Scholar
  28. 28.
    Kalambur S, Rizvi SSH (2006) Polym Eng Sci 46(5):650Google Scholar
  29. 29.
    Shogren RL, Fanta GF et al (1993) Starch-Starke 45(8):276Google Scholar
  30. 30.
    Krochta JM, Baldwin EA et al (1994) Edible coatings and films to improve food quality. Technomic Publishing Company Inc., Lancaster, pp 213–258, 308–329Google Scholar
  31. 31.
    Stepto RFT (2003) Macromol Symp 201(9):203Google Scholar
  32. 32.
    Ollett AL, Parker R et al (1991) J Mater Sci 26(5):1351.  https://doi.org/10.1007/BF00544476 Google Scholar
  33. 33.
    Slade L, Levine H (1993) Carbohydr Polym 21(2–3):105Google Scholar
  34. 34.
    Avella M, De Vlieger JJ et al (2005) Food Chem 93(3):467Google Scholar
  35. 35.
    Wilhelm HM, Sierakowski MR et al (2003) Polym Int 52(6):1035Google Scholar
  36. 36.
    Wilhelm HM, Sierakowski MR et al (2003) Carbohydr Polym 52(2):101Google Scholar
  37. 37.
    Park HM, Li X et al (2002) Macromol Mater Eng 287(8):553Google Scholar
  38. 38.
    Park HM, Lee WK et al (2003) J Mater Sci 38(5):909.  https://doi.org/10.1023/A:1022308705231 Google Scholar
  39. 39.
    Pandey JK, Kumar AP et al (2005) J Nanosci Nanotechnol 5(4):497Google Scholar
  40. 40.
    Pandey JP, Singh RP (2005) Starch/Starke 57(1):8Google Scholar
  41. 41.
    Huang M, Yu J (2006) J Appl Poly Sci 99:170Google Scholar
  42. 42.
    Chiou BS, Yee E et al (2006) Cereal Chem 83(2):300Google Scholar
  43. 43.
    Chiou BS, Yee E et al (2005) Carbohydr Polym 59(4):467Google Scholar
  44. 44.
    Qiao X, Jiang W et al (2005) Starch/Starke 57(12):581Google Scholar
  45. 45.
    Chen B, Evans JRG (2005) Carbohydr Polym 61(4):455Google Scholar
  46. 46.
    Bagdi K, Muller P et al (2006) Compos Interface 13(1):1Google Scholar
  47. 47.
    Dean K, Yu L et al (2007) J Appl Poly Sci 103(2):802Google Scholar
  48. 48.
    Dean K, Yu L et al (2007) Compos Sci Technol 67(3–4):413Google Scholar
  49. 49.
    Chen M, Chen B et al (2005) Nanotechnology 16(10):2334Google Scholar
  50. 50.
    Krochta JM (2002) In: Gennadios A (ed) Protein-based films and coatings. CRC Press, Boca Raton, pp 1–41Google Scholar
  51. 51.
    Dean K, Yu L (2005) In: Smith R (ed) Biodegradable polymers for industrial application. CRC Press, Boca Raton, pp 289–309Google Scholar
  52. 52.
    Zheng JP, Li P et al (2002) J Appl Poly Sci 86(5):1189–1194Google Scholar
  53. 53.
    Arnall AH (2003) Canonbury villas. Greenpeace Environmental Trust, LondonGoogle Scholar
  54. 54.
    Ohshima K (2003) J Jpn Soc Food Sci Technol-Nippon Shokuhin Kagaku Kaishi 50(1):35Google Scholar
  55. 55.
    Rhim JW, Hong SI et al (2006) J Agric Food Chem 54(16):5814Google Scholar
  56. 56.
    Huang Z, Chen H, Yip A (2003) J Nanoparticle Res 5(3–4):333Google Scholar
  57. 57.
    Sanguansri P, Augustin MA (2006) Trends Food Sci Technol 17(10):547Google Scholar
  58. 58.
    Giannelis EP (1996) Adv Mater 8(1):29Google Scholar
  59. 59.
    Ray SS, Okamoto M (2003) Prog Polym Sci 28(11):1539Google Scholar
  60. 60.
    Lagaly G (1999) Appl Clay Sci 15(1–2):1Google Scholar
  61. 61.
    Manias E, Touny A et al (2001) Chem Mater 13:3516Google Scholar
  62. 62.
    Strawhecker KE, Manias E (2000) Chem Mater 12:2943Google Scholar
  63. 63.
    Weiss J, Takhistov P et al (2006) J Food Sci 71(9):107Google Scholar
  64. 64.
    Petersen K, Nielsen PV et al (1999) Trends Food Sci Technol 10:52Google Scholar
  65. 65.
    Krochta JM, Mulder-Johnston de C (1997) Food Technol 51:61Google Scholar
  66. 66.
    Leaversuch RD (1996) Mod Plast 73(1):95Google Scholar
  67. 67.
    Ma C (2006) Liaoning Chemical Industry 35(4):219Google Scholar
  68. 68.
    Tian YK (1999) Shanghai Chemical Industry 24(7):27Google Scholar
  69. 69.
    Bonora M, De Corte D (2003) Macromol Sym 197(7):443Google Scholar
  70. 70.
    Scarascia-Mugnozza G, Schettini E et al (2006) Polym Degrad Stab 91(11):2801Google Scholar
  71. 71.
    Shen ZQ, Simon GP et al (2002) Polymer 43(15):4251Google Scholar
  72. 72.
    Cho JW, Paul DR (2001) Polymer 42(3):1083Google Scholar
  73. 73.
    Fornes TD, Yoon PJ et al (2001) Polymer 42(25):09929Google Scholar
  74. 74.
    Schmidt D, Shah D et al (2002) Curr Opin Solid St Mater Sci 6(3):205Google Scholar
  75. 75.
    Pandey JK, Reddy KR et al (2005) Polym Degrad Stab 88(2):234Google Scholar
  76. 76.
    Dennis HR, Hunter DL et al (2001) Polymer 42(23):9513Google Scholar
  77. 77.
    Vaia RA, Giannelis EP (1997) Macromolecules 30(25):7990Google Scholar
  78. 78.
    Vaia RA, Giannelis EP (1997) Macromolecules 30(25):8000Google Scholar
  79. 79.
    Hong HQ, Jia DM et al (2006) Chinese J Mater Res 20(2):197Google Scholar
  80. 80.
    Wan CJ, Yu LY et al (2006) Trans Nonferr Metal Soc China 16(2):s508Google Scholar
  81. 81.
    Cai YB, Hu Y et al (2007) J Mater Sci 42(14):5524.  https://doi.org/10.1007/s10853-006-1077-5 Google Scholar
  82. 82.
    Ozdemir M, Floros JD (2004) Crit Rev Food Sci Nutr 44:185Google Scholar
  83. 83.
    Fowler PA, Hughes JM et al (2006) J Sci Food Agric 86(12):1781Google Scholar
  84. 84.
    Joue¨t JP (2001) Plasticulture 120(2):108Google Scholar
  85. 85.
    Jana T, Roy BC et al (2001) Eur Polym J 37(4):861Google Scholar
  86. 86.
    Wang YZ, Yang KK et al (2004) J Polym Environ 12(1):7Google Scholar
  87. 87.
    Yew SP, Tang HY et al (2006) Polym Degrad Stab 91(8):1800Google Scholar
  88. 88.
    Ruiz-Hickey ER, Darder M et al (2005) J Mater Chem 15(35–36):3650Google Scholar
  89. 89.
    Ray SS, Yamada K et al (2002) Nano Lett 2(10):1093Google Scholar
  90. 90.
    Ball S, Guan HP et al (1996) Cell 86(9):349Google Scholar
  91. 91.
    Oya A, Kurokawa Y et al (2000) J Mater Sci 35(5):1045.  https://doi.org/10.1023/A:1004773222849 Google Scholar
  92. 92.
    Buleon A, Colonna P et al (1998) Int J Biol Macromol 23:85Google Scholar
  93. 93.
    Poutanen K, Forssell P (1996) Trends Polym Sci 4(4):128Google Scholar
  94. 94.
    Colonna P, Buleon A et al (1982) Carbohydr Polym 2:43Google Scholar
  95. 95.
    Imbery A, Buleon A et al (1991) STARCH-STARKE 43(10):375Google Scholar
  96. 96.
    Colonna P, Buleon A et al (1981) J Food Sci 46:88Google Scholar
  97. 97.
    Okamoto M, Nam PH et al (2001) Nano Letters 1:295Google Scholar
  98. 98.
    Dufresne A, Cavaille JY (1998) J Polym Sci B Polym Phys 36(12):2211Google Scholar
  99. 99.
    Liao HT, Wu CS (2005) J Appl Poly Sci 97(1):397Google Scholar
  100. 100.
    Kvien I, Sugiyama J et al (2007) J Mater Sci 42(19):8163.  https://doi.org/10.1007/s10853-007-1699-2 Google Scholar
  101. 101.
    Averous L, Moro L et al (2000) Polymer 41(11):4157Google Scholar
  102. 102.
    Averous L, Fringant C et al (2001) Polymer 42(15):6565Google Scholar
  103. 103.
    Averous L, Boquillon N (2004) Carbohydr Polym 56(2):111Google Scholar
  104. 104.
    Huang MF, Yu JG et al (2004) Polymer 45(20):7017Google Scholar
  105. 105.
    Zhang W, Xu SY et al (2003) Food chemistry, 3rd edn. China Light Industry Press, Beijing, pp 267–302Google Scholar
  106. 106.
    Damodaran S (1994) Protein functionality in food system. Marcel Dekker, New York, pp 1–38Google Scholar
  107. 107.
    Phillips MC (1981) Food Technol (Chicago) 35:50Google Scholar
  108. 108.
    Miller KS, Krochta JM (1997) Trends Food Sci Technol 8:228Google Scholar
  109. 109.
    Cuq B, Gontard N et al (1998) Cereal Chem 75(1):1Google Scholar
  110. 110.
    Brandenburg AH, Weller CL et al (1993) J Food Sci 58(5):1086Google Scholar
  111. 111.
    Hernandez-Munoz P (2003) J Agric Food Chem 51:7647Google Scholar
  112. 112.
    Yu L, Dean K et al (2006) Prog Polym Sci 31(6):576Google Scholar
  113. 113.
    Tunc S, Angellier H et al (2007) J Membrane Sci 289(1–2):159Google Scholar
  114. 114.
    Dalgleish DG, Kinsella JE et al (1989) Food proteins. American Oil Chemists Society, Champagne, pp 155–178Google Scholar
  115. 115.
    Brunner JR, Whitaker JR et al (1977) Food proteins. AVI Publishers, Inc., Westport, pp 175–208Google Scholar
  116. 116.
    Graveland-Bikker JF, de Kruif CG (2006) Trends Food Sci Technol 17(5):196Google Scholar
  117. 117.
    Hedenqvist MS, Backman A et al (2006) Compos Sci Technol 66(13):2350Google Scholar
  118. 118.
    Snyder HE, Kwon TW (1987) Soybean utilization. Van Nostrand Reinhold Company, Inc., New YorkGoogle Scholar
  119. 119.
    Mounts TL, Wolf WJ et al (1987) In: Wilcox JR (ed) Soybean: improvement, production, and uses, 2nd edn. American Society of Agronomy, Inc., Madison, pp 820–866Google Scholar
  120. 120.
    Rhim JW, Lee JH et al (2005) Food Sci Biotechnol 14(1):112Google Scholar
  121. 121.
    Chen P, Zhang L (2006) Biomacromolecules 7(6):1700Google Scholar
  122. 122.
    Yu JH, Cui GJ et al (2007) J Appl Poly Sci 104(5):3367Google Scholar
  123. 123.
    Eastoe JE, Leach AA (1977) The science and technology of gelatin. Academic Press, Inc., New York, pp 73–107Google Scholar
  124. 124.
    Kim HW, Song JH et al (2005) Adv Funct Mater 15(12):1988Google Scholar
  125. 125.
    Li JJ, Chen YP et al (2007) Biomaterials 28(5):781Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.School of Food ScienceHenan Institute of Science and TechnologyXinxiangChina
  2. 2.School of Land, Crop and Food SciencesThe University of QueenslandBrisbaneAustralia
  3. 3.Centre for High Performance Polymers, School of EngineeringThe University of QueenslandBrisbaneAustralia

Personalised recommendations