Journal of Materials Science

, Volume 43, Issue 12, pp 3992–4000 | Cite as

Creep and creep fracture of commercial aluminium alloys

  • B. WilshireEmail author
  • P. J. Scharning
Rees Rawlings Festschrift


Using standard power law equations, creep rate and creep life measurements at 373–463 K are analysed for a series of aluminium alloys, namely, 2419, 2124, 8090 and 7010. The seemingly complex behaviour patterns are easily rationalized through a modified power law expression, which incorporates the activation energy for lattice diffusion in the alloy matrices (145 kJ mol−1) and the value of the ultimate tensile stress at the creep temperature. By considering the changes in microstructure and creep curve shape as the test duration and temperature increase, all results are then interpreted straightforwardly in terms of the processes shown to govern strain accumulation and damage evolution. Moreover, the data rationalization procedures are also included in new relationships which superimpose the property sets onto sigmoidal ‘master curves’, allowing accurate prediction of the 100,000 h creep-rupture strengths of 2124 by extrapolation of creep lives determined from tests having a maximum duration of only around 1000 h.


Creep Rate Curve Shape Creep Life Master Curf Tertiary Stage 


  1. 1.
    Monkman FC, Grant NJ (1956) Proc ASTM 56:593Google Scholar
  2. 2.
    Nabarro FRN (2004) Mater Sci Eng A A387:659CrossRefGoogle Scholar
  3. 3.
    Mishra RS, Mukherjee AK, Murty KL (eds) (1999) Creep behaviour of advanced materials for the 21st century. TMS, Warrendale, PA, p 391Google Scholar
  4. 4.
    Arzt E (1991) Res Mechanica 399:31Google Scholar
  5. 5.
    Kaufman JG (1999) Properties of aluminium alloys. ASM, Materials Park, OHGoogle Scholar
  6. 6.
    Wilshire B, Battenbough AJ (2007) Mater Sci Eng A A443:156CrossRefGoogle Scholar
  7. 7.
    Burt H, Wilshire B (2004) Metall Mater Trans A 35A:1691CrossRefGoogle Scholar
  8. 8.
    Burt H, Wilshire B (2005) Metall Mater Trans A 36A:1219CrossRefGoogle Scholar
  9. 9.
    Burt H, Wilshire B (2006) Metall Mater Trans A 37A:1005CrossRefGoogle Scholar
  10. 10.
    Wilshire B, Burt H, Lavery N (2006) Mater Sci Forum 519–521:1041CrossRefGoogle Scholar
  11. 11.
    Wilshire B, Scharning PJ (2007) Scripta Mater 56:701CrossRefGoogle Scholar
  12. 12.
    Wilshire B, Scharning PJ (2007) Scripta Mater 56:1023CrossRefGoogle Scholar
  13. 13.
    Evans RW, Wilshire B (1985) In: Creep of metals and alloys. The Institute of Metals, LondonGoogle Scholar
  14. 14.
    Williams KR, Wilshire B (1973) Metal Sci J 7:176CrossRefGoogle Scholar
  15. 15.
    Harris JE, Jones RB (1963) J Nucl Mater 10:360CrossRefGoogle Scholar
  16. 16.
    Burton B, Reynolds GL (1995) Mater Sci Eng A A191:135CrossRefGoogle Scholar
  17. 17.
    Srivastava V, Williams JP, McNee KR, Greenwood GN, Jones H (2004) Mater Sci Eng A A382:50CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Materials Research Centre, School of EngineeringUniversity of Wales SwanseaSwanseaUK

Personalised recommendations