Advertisement

Journal of Materials Science

, Volume 43, Issue 6, pp 1890–1896 | Cite as

Implantable photonic crystal for reflection-based optical sensing of biodegradation

  • Musashi FujishimaEmail author
  • Syoei Sakata
  • Takuya Iwasaki
  • Kumao Uchida
Article

Abstract

Biodegradable inverse opal (IoPPC) was synthesized from a multifunctional carboxylic acid and polyols by colloidal crystal templating. The IoPPC was prepared by infiltration of the monomer solution into interparticle voids of silica colloidal crystal template, polycondensation of the infiltrated film, and removal of the template. The synthesized IoPPC was characterized by infrared absorption, X-ray diffraction measurements, differential scanning calorimetry, and thermogravimetry/mass spectrometry analysis. In order to clarify the effect of biodegradation on the inverse opal structure and the optical reflection property, the IoPPC was implanted in subcutaneous tissue of the lower back of three mice (ICR, 10 weeks, female). After the 2 weeks implantation, fragmented samples were harvested from the implant location and investigated by scanning electron microscope observations and optical reflection measurements. It was found that the reflection peak for the harvested samples decayed from that for the sample without implantation. Such a spectral change is considered to be attributed to the deterioration of the regularity of the inverse opal structures through biodegradation. The finding of this study will serve in the development of reflection-based sensing in various biomedical applications.

Keywords

Differential Scanning Calorimetry Inverse Opal Colloidal Crystal Optical Reflection Silica Colloid 

Notes

Acknowledgements

The authors thank H. Kitagawa of Kyushu University for XRD measurements and TG/MS analyses. We also acknowledge R. Moriyama of Kinki University for technical instruction in the animal experiments. This work was partly supported by a grant-in-aid for Scientific Research (No. 18500369) from the Ministry of Education, Culture, Sports, Science and Technology, and by the Circle for the Promotion of Science and Engineering.

References

  1. 1.
    Karageorgiou V, Kaplan D (2005) Biomaterials 26:5474CrossRefGoogle Scholar
  2. 2.
    Hua FJ, Kim GE, Lee JD, Son YK, Lee DS (2002) J Biomed Mater Res 63:161CrossRefGoogle Scholar
  3. 3.
    Harris LD, Kim BS, Mooney DJ (1998) J Biomed Mater Res 42:396CrossRefGoogle Scholar
  4. 4.
    Ma PX, Choi JW (2001) Tissue Eng 7:23CrossRefGoogle Scholar
  5. 5.
    Marshall AJ, Ratner BD (2005) AIChE J 51:1221CrossRefGoogle Scholar
  6. 6.
    Ratner BD, Marshall AJ (2006) Polym Prepr 47:69Google Scholar
  7. 7.
    Zhang K, Yan H, Stein A, Francis LF (2005) J Am Ceram Soc 88:587CrossRefGoogle Scholar
  8. 8.
    Zhang K, Yan H, Bell DC, Stein A, Francis LF (2003) J Biomed Mater Res 66A:860CrossRefGoogle Scholar
  9. 9.
    Yan H, Zhang K, Blanford CF, Francis LF, Stein A (2001) Chem Mater 13:1374CrossRefGoogle Scholar
  10. 10.
    Grayson CR, Choi IS, Tyler BM, Wang PP, Brem H, Cima MJ, Langer R (2003) Nat Mater 2:767CrossRefGoogle Scholar
  11. 11.
    Levenberg S, Langer R (2004) Curr Top Dev Biol 61:113CrossRefGoogle Scholar
  12. 12.
    Xia Y, Gates B, Yin Y, Lu Y (2000) Adv Mater 12:693CrossRefGoogle Scholar
  13. 13.
    Stein A, Schroden RC (2001) Curr Opin Solid-State Mater Sci 5:553CrossRefGoogle Scholar
  14. 14.
    Diop M, Lessard RA (2003) J Nonlinear Opt Quantum Opt 30:203Google Scholar
  15. 15.
    Lee YJ, Braun PV (2003) Adv Mater 15:563CrossRefGoogle Scholar
  16. 16.
    Takeoka Y, Watanabe M (2003) Adv Mater 15:199CrossRefGoogle Scholar
  17. 17.
    Cassagneau T, Caruso F (2002) Adv Mater 14:1629CrossRefGoogle Scholar
  18. 18.
    Liu J, Li G, Wu Z, An Q, Qiu Y (2007) ChemPhysChem 8:1298CrossRefGoogle Scholar
  19. 19.
    Fujishima M, Sakata S, Kikoku M, Ogawa D, Uchida K (2007) Chem Lett 36:1510CrossRefGoogle Scholar
  20. 20.
    Weissleder R (2001) Nat Biotechnol 19:316CrossRefGoogle Scholar
  21. 21.
    Li YY, Cunin F, Link JR, Gao T, Betts RE, Reiver SH, Chin V, Bhatia SN, Sailor MJ (2003) Science 299:2045CrossRefGoogle Scholar
  22. 22.
    Dupuis A, Guo N, Gao Y, Godlbout N, Lacroix S, Dubois C, Skorobogatiy M (2007) Opt Lett 32:109CrossRefGoogle Scholar
  23. 23.
    Ikada Y, Tsuji H (2000) Macromol Rapid Commun 21:117CrossRefGoogle Scholar
  24. 24.
    Yang J, Webb AR, Ameer GA (2004) Adv Mater 16:511CrossRefGoogle Scholar
  25. 25.
    Yang J, Webb AR, Pickerill SJ, Hageman G, Ameer GA (2006) Biomaterials 27:1889CrossRefGoogle Scholar
  26. 26.
    Denkov ND, Velev OD, Kralchevsky PA, Ivanov IB, Yoshimura H, Nagayama K (1993) Nature 361:26CrossRefGoogle Scholar
  27. 27.
    Míguez H, Meseguer F, López C, Mifsud A, Moya JS, Vázquez L (1997) Langmuir 13:6009CrossRefGoogle Scholar
  28. 28.
    Nagata M, Kono Y, Sakai W, Tsutsumi N (1999) Macromolecules 32:7762CrossRefGoogle Scholar
  29. 29.
    Schroden RC, Al-Daous M, Blanford CF, Stein A (2002) Chem Mater 14:3305CrossRefGoogle Scholar
  30. 30.
    Blanford CF, Schroden RC, Al-Daous M, Stein A (2001) Adv Mater 13:26CrossRefGoogle Scholar
  31. 31.
    Richel A, Johnson NP, McComb DW (2000) App Phys Lett 76:1816CrossRefGoogle Scholar
  32. 32.
    Míguez H, Meseguer F, López C, Lopez-Tejeira F, Sanchez-Dehesa J (2001) Adv Mater 13:393CrossRefGoogle Scholar
  33. 33.
    Busch K, John S (1998) Phys Rev E 58:3896CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Musashi Fujishima
    • 1
    Email author
  • Syoei Sakata
    • 1
  • Takuya Iwasaki
    • 1
  • Kumao Uchida
    • 1
  1. 1.School of Science and EngineeringKinki UniversityHigashi-OsakaJapan

Personalised recommendations