Journal of Materials Science

, Volume 43, Issue 6, pp 1880–1884 | Cite as

The formation mechanism of titania nanotube arrays in hydrofluoric acid electrolyte

  • Jing Bai
  • Baoxue ZhouEmail author
  • Longhai Li
  • Yanbiao Liu
  • Qing Zheng
  • Jiahui Shao
  • Xinyuan Zhu
  • Weimin Cai
  • Junsheng Liao
  • Lexi Zou


Self-organized and highly ordered titania nanotube arrays (TNAs) were prepared through electrochemical anodic oxidization on a titanium foil in 0.5 wt.% hydrofluoric acid (HF) electrolyte. The current density and morphology images during the formation process of TNAs were studied. Results show that the formation of TNAs includes the following processes. Initially, dense oxide of titania was rapidly formed on the titanium surface, followed by small pore formation. The adjacent small pores were then integrated and become larger pores. At the same time, small tubes were transformed. These small tubes were further integrated into larger tubes until the primary tube formation. Finally, the tubular structure was gradually optimized and eventually developed into the highly ordered TNAs. A model was proposed to explain the formation mechanism of TNAs fabricated on a titanium foil in HF acid electrolyte.


Tubular Structure Anodization Voltage Small Tube Titanium Foil Dense Oxide 



This work was supported by the National Nature Science Foundation of China (No. 20677039), Science and Technology Commission of Shanghai Municipality (No. 05nm05004) and the Program of New Century Excellent Talents in University (No. NCET-04-0406). Thanks for support of FE-SEM lab in Instrumental Analysis Center of SJTU.


  1. 1.
    Miao Z, Xu D, Ouyang J, Guo G, Zhao X, Tang Y (2002) Nano Lett 2:717CrossRefGoogle Scholar
  2. 2.
    Limmer SJ, Chou TP, Cao GZ (2004) J Mater Sci 39:895CrossRefGoogle Scholar
  3. 3.
    Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Langmuir 14:3160CrossRefGoogle Scholar
  4. 4.
    Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC (2001) J Mater Res 16:3331CrossRefGoogle Scholar
  5. 5.
    Maggie P, Karthik S, Sorachon Y, Haripriya EP, Oomman KV, Mor GK, Thomas AL, Adriana F, Grimes CA (2006) J Phys Chem B 110:16179CrossRefGoogle Scholar
  6. 6.
    Mor GK, Oomman KV, Maggie P, Karthik S, Grimes CA (2006) Sol Energ Mater Sol C 90:2011CrossRefGoogle Scholar
  7. 7.
    Vitiello RP, Macak JM, Ghicov A, Tsuchiya H, Dick LFP, Schmuki P (2006) Electrochem Commun 8:544CrossRefGoogle Scholar
  8. 8.
    Chuanmin R, Maggie P, Oomman KV, Grimes CA (2005) Sol Energ Mater Sol C 90:1283Google Scholar
  9. 9.
    Karthik S, Kong CT, Mor GK, Grimes CA (2006) J Phys D: Appl Phys 39:2361CrossRefGoogle Scholar
  10. 10.
    Xie YB (2005) Electrochim Acta 51:3399CrossRefGoogle Scholar
  11. 11.
    Lai YK, Sun L, Chen YC, Zhuang HF, Lin CJ, Chin JW (2006) J Electrochem Soc 153:123CrossRefGoogle Scholar
  12. 12.
    Quan X, Yang SG, Ruan XL, Zhao HM (2005) Environ Sci Technol 39:3770CrossRefGoogle Scholar
  13. 13.
    Xie Y (2006) Nanotechnology 17:3340CrossRefGoogle Scholar
  14. 14.
    Mor GK, Oomman KV, Maggie P, Grimes CA (2003) Sensor Lett 1:42CrossRefGoogle Scholar
  15. 15.
    Oomman KV, Maggie P, Karthik S, Mor GK, Grimes CA (2005) J Nanosci Nanotechnol 5:1158CrossRefGoogle Scholar
  16. 16.
    Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Nano Lett 6:215CrossRefGoogle Scholar
  17. 17.
    Jong HP, Kim SW, Bard AJ (2006) Nano Lett 6:24CrossRefGoogle Scholar
  18. 18.
    Macak JM, Hiroaki T, Andrej G, Schmuki P (2005) Electrochem Commun 7:1133CrossRefGoogle Scholar
  19. 19.
    Maggie P, Karthik S, Oomman KV, Mor GK, Grimes CA (2006) J Phys D: Appl Phys 39:2498CrossRefGoogle Scholar
  20. 20.
    Wang H, Yip CT, Cheung KY, Djurisic AB, Xie MH, Leung YH, Chan WK (2006) Appl Phys Lett 89Google Scholar
  21. 21.
    Andrei G, Macak JM, Hiroaki T, Julia K, Volker H, Lothar F, Schmuki P (2006) Nano Lett 6:1080CrossRefGoogle Scholar
  22. 22.
    Andrei G, Macak JM, Hiroaki T, Julia K, Volker H, Sebastian K, Schmuki P (2006) Chem Phys Lett 419:426CrossRefGoogle Scholar
  23. 23.
    Zhao JL, Wang XH, Sun TY, Li LT (2005) Nanotechnology 16:2450CrossRefGoogle Scholar
  24. 24.
    Wang M, Guo DJ, Li HL (2005) J Solid Stage Chem 178:1996CrossRefGoogle Scholar
  25. 25.
    Mor GK, Oomman KV, Maggie P, Niloy M, Grimes CA (2003) J Mater Res 18:2588CrossRefGoogle Scholar
  26. 26.
    Macak JM, Hiroaki T, Schmuki P (2005) Angew Chem Int Ed 44:2100CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jing Bai
    • 1
  • Baoxue Zhou
    • 1
    Email author
  • Longhai Li
    • 1
  • Yanbiao Liu
    • 1
  • Qing Zheng
    • 1
  • Jiahui Shao
    • 1
  • Xinyuan Zhu
    • 1
  • Weimin Cai
    • 1
  • Junsheng Liao
    • 2
  • Lexi Zou
    • 2
  1. 1.School of Environmental Science and EngineeringShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.China Academy of Engineering PhysicsMianyangPeople’s Republic of China

Personalised recommendations