Advertisement

Journal of Materials Science

, Volume 43, Issue 12, pp 4167–4174 | Cite as

Thermo-elastic behaviour of a natural quartzite: itacolumite

  • A. Doncieux
  • D. Stagnol
  • M. Huger
  • T. Chotard
  • C. GaultEmail author
  • T. Ota
  • S. Hashimoto
Article

Abstract

Itacolumite is a particular type of sandstone constituted of quartz grains, with an interlocked microstructure and large intergranular decohesions. This article is devoted to the study of the thermo-elastic behaviour of this material during thermal cycles between 20 and 800 °C. This was made by using an ultrasonic pulse-echo measurement technique of Young’s modulus E, coupled to thermal expansion experimentation and to acoustic emission. An unusual evolution of elastic properties versus temperature is found, with strong irreversible effects around the temperature of the α–β transition of quartz. A damage parameter, representing the fractional number of cracks, is calculated with a Kachanov type formulation, by using the experimental data for itacolumite and the values of E, obtained from literature for an hypothetic ideal quartz polycrystal. The evolution of this parameter versus temperature is explained by internal stresses that are developed by both thermal and elastic effects in quartz grains.

Keywords

Acoustic Emission Thermal Cycle Acoustic Emission Activity Acoustic Emission Sensor Anisotropic Thermal Expansion 

Notes

Acknowledgement

The authors are grateful to the Federation for International Refractories Research and Education (FIRE) for its financial support.

References

  1. 1.
    Devries RC, Jugle DB (1968) J Am Ceram Soc 51:387CrossRefGoogle Scholar
  2. 2.
    Dusseault MB (1980) Q J Eng Geol London 13:119CrossRefGoogle Scholar
  3. 3.
    Huger M, Tessier-Doyen N, Chotard T, Gault C (2007) Ceram Forum Int 84:E93Google Scholar
  4. 4.
    Huger M, Fargeot D, Gault C (2002) High Temp High Press 34:193CrossRefGoogle Scholar
  5. 5.
    Smirnov MB (1999) Phys Rev B 59:4036CrossRefGoogle Scholar
  6. 6.
    Raz U, Girsperger S, Thompson AB (2007). https://doi.org/www.e-collection.ethbib.ethz.ch, as on 5 july 2007
  7. 7.
    Kachanov LM (1959) J Appl Math Mech l23:880CrossRefGoogle Scholar
  8. 8.
    Ono I (1995) J Phys Earth 43:157CrossRefGoogle Scholar
  9. 9.
    Zubov VG, Firsova MM (1962) Sov Phys Crystallogr 7:374Google Scholar
  10. 10.
    Kimizuka H, Kaburaki H (2005) Phys Stat Sol 242:607CrossRefGoogle Scholar
  11. 11.
    Peselnick L, Meister R (1965) J Appl Phys 36:2879CrossRefGoogle Scholar
  12. 12.
    Sato I, Ichikawa Y, Sakanoue J, Mizutani M, Adachi N, Ota T (2008) J Am Ceram Soc 91:607CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • A. Doncieux
    • 1
  • D. Stagnol
    • 1
  • M. Huger
    • 1
  • T. Chotard
    • 1
  • C. Gault
    • 1
    Email author
  • T. Ota
    • 2
  • S. Hashimoto
    • 2
  1. 1.Groupe d’Etude des Matériaux HétérogènesENSCILimogesFrance
  2. 2.Nagoya Institute of Technology NagoyaJapan

Personalised recommendations