Journal of Materials Science

, Volume 43, Issue 6, pp 1948–1957 | Cite as

Recombination of silica and zirconia into zircon by means of laser treatment of plasma-sprayed coatings

  • S. SchelzEmail author
  • F. Enguehard
  • N. Caron
  • D. Plessis
  • B. Minot
  • F. Guillet
  • J.-L. Longuet
  • N. Teneze
  • E. Bruneton


Self-supported zircon (ZrSiO4) coatings have been deposited by means of atmospheric pressure plasma spraying, a high growth rate deposition method. However, it is well known that ZrSiO4 dissociates into ZrO2 and SiO2 in the high-temperature plasma torch during plasma spraying, the rapid quenching preventing reverse combination of both components into ZrSiO4. Usually, high-temperature annealing (1,600–1,900 K) is applied to recombine SiO2 and ZrO2 into ZrSiO4. In this contribution, we investigate an attractive technological alternative to recombine SiO2 and ZrO2 into ZrSiO4 by laser treatment with a scanning continuous wave CO2 laser. By carefully adjusting the CO2 laser treatment parameters (laser power density and scanning velocity), we show that the SiO2 and ZrO2 phases indeed recombine into ZrSiO4, however, with a very low recombination rate. Thus, we have investigated the addition of SiO2-rich glassy particles to the plasma spray powders to facilitate the recombination of ZrO2, and SiO2 into ZrSiO4 during the laser treatment. Furthermore, the beneficial role of the glassy particles addition to substantially lower the annealing temperature during classical heat treatments has been studied. Available evidence indicates that the glassy particles melt during heat treatment, and thus favor the mobility and availability of silica at the ZrO2 grains, which results in a lowering of the reaction temperature and an enhancement of the reaction kinetics.


Laser Treatment Laser Power Density ZrSiO4 Bottom Curve Scanning Velocity 



We gratefully acknowledge the technical assistance of Jérôme Lhostis, Charles Froger and Anne-Marie Le Creurer-Hérail. The authors also thank Sébastien Lambert for fruitful discussions and helpful comments.


  1. 1.
    Del Pin G, Maschio S, Brückner S, Bachiorrini A (2004) Ceram Int 30:279CrossRefGoogle Scholar
  2. 2.
    Orange G, Fantozzi G, Cambier F, Leblud C, Anseau MR, Leriche A (1985) J Mater Sci 20:2533CrossRefGoogle Scholar
  3. 3.
    Shackelford JF, Alexander W, Park JS (1994) CRC materials science and engineering handbook. CRC Press, Boca Raton, FLGoogle Scholar
  4. 4.
    Wang AH, Wang WY, Xie CS, Song WL, Zeng DW (2004) Appl Surf Sci 227:104CrossRefGoogle Scholar
  5. 5.
    Mori T (1990) J Ceram Soc Jpn 98(9):1017CrossRefGoogle Scholar
  6. 6.
    Shi Y, Huang XX, Yan DS (1994) J Eur Ceram Soc 13(2):113CrossRefGoogle Scholar
  7. 7.
    Mori T, Yamamura H, Kobayashi H, Mitamura T (1992) J Am Ceram Soc 75:2420CrossRefGoogle Scholar
  8. 8.
    Valéro R, Durand B, Guth J-L, Chopin T (1999) Microporous Mesoporous Mater 29:311CrossRefGoogle Scholar
  9. 9.
    Shi Y, Huang X, Yan D (1994) J Eur Ceram Soc 13(2):113CrossRefGoogle Scholar
  10. 10.
    Tartaj P, Sanz J, Serna J, Ocana M (1994) J Mater Sci 29:6533CrossRefGoogle Scholar
  11. 11.
    Itoh T (1992) J Cryst Growth 125:223CrossRefGoogle Scholar
  12. 12.
    Butterman WC, Foster WR (1967) Am Miner 52:880Google Scholar
  13. 13.
    Evans AM, Williamson JPH (1977) J Mater Sci 12:779CrossRefGoogle Scholar
  14. 14.
    Curtis CE, Sowman HG (1953) J Am Ceram Soc 36:190CrossRefGoogle Scholar
  15. 15.
    Ballaman AA, Laudise RA (1965) J Am Ceram Soc 48:130CrossRefGoogle Scholar
  16. 16.
    Kanno Y (1989) J Mater Sci 24:2415CrossRefGoogle Scholar
  17. 17.
    Frondel C, Colette RL (1957) Am Miner 42:759Google Scholar
  18. 18.
    Kido H, Komarneni S (1990) Trans Mater Res Soc 1:358CrossRefGoogle Scholar
  19. 19.
    Caruba R, Baumer A (1985) Am Miner 70:1224Google Scholar
  20. 20.
    Shoyama M, Matsumoto N, Hashimoto T, Nasu H, Kamiya K (1998) J Mater Sci 33:4821CrossRefGoogle Scholar
  21. 21.
    Fauchais P, Vardelle A, Dussoubs B (2001) J Therm Spray Technol 10(1):44CrossRefGoogle Scholar
  22. 22.
    Rudajevová A (1994) Surf Coat Technol 64:47CrossRefGoogle Scholar
  23. 23.
    Wang E, Wang D (1992) Proceedings of the International Ceramics Conference, Melbourne, p 359Google Scholar
  24. 24.
    Lawrence J, Li L, Spencer JT (1999) Appl Surf Sci 138–139:388CrossRefGoogle Scholar
  25. 25.
    Bradley L, Li L, Stott FH (2000) Mater Sci Eng A 278:204CrossRefGoogle Scholar
  26. 26.
    Bradley L, Li L, Stott FH (1999) Appl Surf Sci 138–139:233CrossRefGoogle Scholar
  27. 27.
    Triantafyllidis D, Li L, Stott FH (2005) Mater Sci Eng A 390:271CrossRefGoogle Scholar
  28. 28.
    Wang WY, Wang AH, Zeng DW, Bai ZK, Xie CS, Song WL, Zhu XC (2006) Mater Charact 56:227CrossRefGoogle Scholar
  29. 29.
    Veytizou C, Quinson JF, Valfort O, Thomas G (2001) Solid State Ionics 139:315CrossRefGoogle Scholar
  30. 30.
    Wei Weng-Cheng J, Adams R (1992) J Eur Ceram Soc 10:291CrossRefGoogle Scholar
  31. 31.
    Balek V, Trojan M (1989) Thermochim Acta 143:101CrossRefGoogle Scholar
  32. 32.
    Samsonov GV (ed) (1973) The oxide handbook. IFI/PlenumGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • S. Schelz
    • 1
    Email author
  • F. Enguehard
    • 1
  • N. Caron
    • 1
  • D. Plessis
    • 1
  • B. Minot
    • 1
  • F. Guillet
    • 1
  • J.-L. Longuet
    • 1
  • N. Teneze
    • 1
  • E. Bruneton
    • 1
  1. 1.CEA/Le RipaultMontsFrance

Personalised recommendations