Advertisement

Journal of Materials Science

, Volume 43, Issue 6, pp 1776–1782 | Cite as

Comparative investigation on nanocrystal structure, optical, and electrical properties of ZnO and Sr-doped ZnO thin films using chemical bath deposition method

  • T. A. Vijayan
  • R. Chandramohan
  • S. Valanarasu
  • J. Thirumalai
  • S. P. Subramanian
Article

Abstract

This paper reports on the comparative investigation of structural and optical properties of nano thin films of ZnO and Sr-doped ZnO (SZO) onto glass substrates synthesized by a two-step chemical bath deposition (CBD) technique. The mode of crystallization, structural properties, and morphologies have been investigated. The films are polycrystalline in nature with hexagonal phase having (002) preferential orientation. The typical crystallite size is also estimated and found to be around 30–80 nm. The shifts in optical band gap of the SZO films are estimated to be ∼3.25–3.27 eV with respect to the ZnO film and the refractive index is 2.35. The room temperature resistivity is of the order of ∼2,000 Ωcm. Thermoemf measurements show that films are of n-type. The sensitivity of the films was studied as a function of their temperature 275–575 K for a fixed ethanol concentration (400 ppm). The films have been tested for cross sensitivity for different gases and it has been confirmed that these are highly sensitive and selective for ethanol vapors around 200 °C in air atmosphere.

Keywords

Glass Substrate Chemical Bath Deposition Ethanol Vapor Texture Coefficient Dope Film 

Notes

Acknowledgement

The authors T.A. Vijayan and R. Chandramohan thank University Grants Commission, New Delhi, India for the financial support.

References

  1. 1.
    Ryu YR, Zhu S, Budai JD, Chandrasekhar HR, Miceli PF, White HW (2000) J Appl Phys 88:201CrossRefGoogle Scholar
  2. 2.
    Wang L, Giles NC (2003) J Appl Phys 94:973CrossRefGoogle Scholar
  3. 3.
    Minami T, Suzuki S, Miyata T (2001) Thin Solid Films 53:398Google Scholar
  4. 4.
    Chu S-Y, Water W, Liaw J-T (2003) Ultrasonics 41:133CrossRefGoogle Scholar
  5. 5.
    Chu S-Y, Chen T-Y, Water W (2005) IEEE Trans Ultrason Ferroelectr Freq Control 52:2308CrossRefGoogle Scholar
  6. 6.
    Water W, Yan Y-S (2007) Thin Solid Films 515:6992CrossRefGoogle Scholar
  7. 7.
    Boyle DS, Govender K, O’Brien P (2003) Thin Solid Films 483:431Google Scholar
  8. 8.
    Peiró AM, Domingo C, Peral J, Domenech X, Vigil E, Hernández-Fenollosa MA, Mollar M, Marí B, Ayllón JA (2005) Thin Solid Films 483:79CrossRefGoogle Scholar
  9. 9.
    Powder diffraction files, Joint Committee on Powder Diffraction Standards, ASTM, Philadelphia, PA, 1967 Card 36-1451Google Scholar
  10. 10.
    Cheng H-C, Chen C-Fu, Lee C-C (2006) Thin Solid Films 498:142CrossRefGoogle Scholar
  11. 11.
    Aranovich J, Ortiz A, Bube RH (1979) J Vac Sci Technol 16:994CrossRefGoogle Scholar
  12. 12.
    Tang W, Cameron DC (1994) Thin Solid Films 238:83CrossRefGoogle Scholar
  13. 13.
    Hata T, Minamikawa T, Morimoto O, Hada T (1979) J Cryst Growth 47:171CrossRefGoogle Scholar
  14. 14.
    Aktaruzzaman AF, Sharma GL, Malhotra LK (1991) Thin Solid Films 198:67CrossRefGoogle Scholar
  15. 15.
    Hu J, Gordon RG (1992) J Appl Phys 71:880CrossRefGoogle Scholar
  16. 16.
    Izaki M (1999) J Electrochem Soc 146:4517CrossRefGoogle Scholar
  17. 17.
    Barret C, Massalki TB (1980) Structure of metals. Pergamon, Oxford, pp 204Google Scholar
  18. 18.
    Shi CS, Fu ZX, Guo CX, Ye XL, Wei YG, Deng J, Shi JY, Zhang GB (1999) J Electron Spectrosc Relat Phenom 103:629CrossRefGoogle Scholar
  19. 19.
    Kohan AF, Ceder G, Morgan D, Van de Walle CG (2000) Phys Rev B 61:15019CrossRefGoogle Scholar
  20. 20.
    Wang J, Du G, Zhang Y, Zhao B, Yang X, Liu D (2004) J Cryst Growth 263:269CrossRefGoogle Scholar
  21. 21.
    Studenikin SA, Golego N, Cocivera M (1998) J Appl Phys 84:4Google Scholar
  22. 22.
    Minami T, Nanto H, Takata S (1981) J Lumin 63:2425Google Scholar
  23. 23.
    Sze SM (1981) Physics of semiconductor devices, p 84Google Scholar
  24. 24.
    Pankove JI (1975) Optical progress in semiconductors. Dover Publications, New YorkGoogle Scholar
  25. 25.
    Burstain E (1954) Phys Rev 93:638CrossRefGoogle Scholar
  26. 26.
    Moss TS (1954) Proc Phys Soc London Ser B 67:775CrossRefGoogle Scholar
  27. 27.
    Sernelius SE, Berggren KF, Jin ZC, Hamberg I, Granavist CG (1988) Phys Rev B 37:10244CrossRefGoogle Scholar
  28. 28.
    Lee HW, Lau SP, Wang YG, Tse KY, Hng HH, Tay BK (2004) J Cryst Growth 268:596CrossRefGoogle Scholar
  29. 29.
    Dimitrov V, Sakka S (1996) J Appl Phys 79:1736CrossRefGoogle Scholar
  30. 30.
    Lide DR (2005) CRC handbook of chemistry and physics, vol 10, CRC press, p 230Google Scholar
  31. 31.
    Cetinorgu E, Goldsmith S, Boxman RL (2007) Surf Coat Technol 201:7266CrossRefGoogle Scholar
  32. 32.
    Jung SJ, Han YH, Koo BM, Lee JJ, Joo JH (2005) Thin Solid Films 475:275CrossRefGoogle Scholar
  33. 33.
    Sukkar MH, Tuller HL (1984) Adv Ceram 7:71Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • T. A. Vijayan
    • 1
  • R. Chandramohan
    • 1
  • S. Valanarasu
    • 2
  • J. Thirumalai
    • 1
  • S. P. Subramanian
    • 3
  1. 1.Department of PhysicsSree Sevugan Annamalai CollegeDevakottai India
  2. 2.Department of PhysicsAnanda CollegeDevakottai India
  3. 3.Department of ChemistrySree Sevugan Annamalai CollegeDevakottai India

Personalised recommendations