Journal of Materials Science

, Volume 43, Issue 11, pp 3917–3922 | Cite as

TEM and HAADF-STEM study of the structure of Au nano-particles on CeO2

Intergranular and Interphase Boundaries in Materials

Abstract

The structure and growth process of Au particles on CeO2 were observed by the transmission electron microscope (TEM) equipped with the high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) system. The growth of Au particles on CeO2 was shown to be mainly Ostwald ripening under heating at various temperatures, although it is suppressed in the hydrogen atmosphere. In the HAADF-STEM observation of Au/CeO2 interfaces with the orientation relationship of (111)[1–10]Au//(111)[1–10]CeO2, (111)[−110]Au//(111)[1–10]CeO2 and atomic columns of Au and Ce were successfully resolved, and the interface structure was analyzed in details for the first time.

Notes

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science (JSPS-Grant-in-Aid for Scientific Research (B) 18360322). The authors are grateful to Drs. S. Ichikawa (Osaka University), K. Okazaki, and S. Tanaka (AIST) and Prof. M. Haruta (Tokyo Metropolitan University) for their valuable comments and stimulating discussion. The authors are also grateful to Ms. J. Maekawa and Ms. M. Makino for their assistance with sample preparation.

References

  1. 1.
    Haruta M (1997) Catal Today 36:153CrossRefGoogle Scholar
  2. 2.
    Haruta M (2003) Chem Rec 3:75CrossRefGoogle Scholar
  3. 3.
    Haruta M, Date M (2001) Appl Catal A Gen 222:427CrossRefGoogle Scholar
  4. 4.
    Fu Q, Weber A, Flytzani-Stephanopoulos M (2001) Catal Lett 77:87CrossRefGoogle Scholar
  5. 5.
    Burch R (2006) Phys Chem Chem Phys 8:5483CrossRefGoogle Scholar
  6. 6.
    Sakurai H, Akita T, Tsubota S, Kiuchi M, Haruta M (2005) Appl Catal A Gen 291:179CrossRefGoogle Scholar
  7. 7.
    Manzoli M, Boccuzzi F, Chiorino A, Vindigni F, Deng W, Flytzani-Stephanopoulos M (2007) J Catal 245:308CrossRefGoogle Scholar
  8. 8.
    Lu JL, Gao HJ, Shaikhutdinov S, Freund HJ (2007) Catal Lett 114:8CrossRefGoogle Scholar
  9. 9.
    Spence JCH (1999) Mater Sci Eng R26:1Google Scholar
  10. 10.
    Browning ND, Pennycook SJ (1996) J Phys D Appl Phys 29:1779CrossRefGoogle Scholar
  11. 11.
    Pennycook SJ, Boatner LA (1988) Nature 336:565CrossRefGoogle Scholar
  12. 12.
    Pennycook SJ, Jesson DE (1991) Ultramicroscopy 37:14CrossRefGoogle Scholar
  13. 13.
    Akita T, Okumura M, Tanaka K, Kohyama M, Haruta M (2005) J Mater Sci 40:3101CrossRefGoogle Scholar
  14. 14.
    Akita T, Okumura M, Tanaka K, Kohyama M, Haruta M (2006) Catal Today 117:62CrossRefGoogle Scholar
  15. 15.
    Akita T, Tanaka K, Kohyama M, Haruta M (2007) Catal Today 122:233CrossRefGoogle Scholar
  16. 16.
    Esch F, Fabris S, Zhou L, Montini T, Africh C, Fomasiero P, Comelli G, Rosei R (2005) Science 309:752CrossRefGoogle Scholar
  17. 17.
    Leitenburg C, Trovarelli A, Kašpar J (1997) J Catal 166:98CrossRefGoogle Scholar
  18. 18.
    Zanella R, Louis C (2005) Catal Today 107–108:768CrossRefGoogle Scholar
  19. 19.
    Okazaki K, Morikawa Y, Tanaka S, Tanaka K, Kohyama M (2004) Phys Rev B 69:235404CrossRefGoogle Scholar
  20. 20.
    Bernal S, Botana FJ, Calvino JJ, López-Cartes C, Pérez-Omil JA, Rodríguez-Izquierdo JM (1998) Ultramicroscopy 72:135CrossRefGoogle Scholar
  21. 21.
    Kohyama M, Tanaka S, Okazaki K, Akita T (2007) Mater Trans 48:675CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Research Institute for Ubiquitous Energy DevicesNational Institute of Advanced Industrial Science and Technology (AIST)IkedaJapan

Personalised recommendations