Journal of Materials Science

, Volume 43, Issue 10, pp 3377–3384 | Cite as

Thermal stability of CrNx nanometric coatings deposited on stainless steel

  • Carlo PaternosterEmail author
  • Alberto Fabrizi
  • Raimondo Cecchini
  • Mohamad El Mehtedi
  • Patrick Choquet
NanoSmat 2007 - International Conference on Surfaces, Coatings and Nanostructured Materials


Thin CrNx coatings are often used as protective coatings for steel. In these applications, coated parts might be subjected to high temperatures that can alter the coatings structural and mechanical properties. In this work, the properties of nanometric CrNx coatings deposited by reactive magnetron sputtering on AISI 304L stainless steel were studied by transmission electron microscopy, glazing incident X-ray diffraction, Atomic Force Microscopy, and nanoindentation. The effect of annealing, both in air and vacuum, on the coating crystal structure, surface morphology and hardness were also investigated. It was found that annealing in vacuum-induced phase transformation from CrN to Cr2N, while after annealing in air only Cr2O3 phase was present. Surface roughness did not increase for annealing in vacuum. CrNx coatings with higher Cr2N phase content showed lower roughness increase for annealing in air. Measured hardness was >10 GPa for as-deposited CrNx samples. An increase in hardness up to >20 GPa was found for vacuum-annealed samples.


Reactive Magnetron AISI 304L Small Penetration Depth Cr2N Phase Cr2O3 Phase 



The authors are grateful to Prof. S. Spigarelli and Prof. M. Cabibbo for the useful discussions. This research has been funded by EU-EXCELL Project NoE 5157032 (web site:


  1. 1.
    Schramm BC, Scheerer H, Hoche H, Broszeit E, Abele E, Berger C (2004) Surf Coat Technol 188–189:623CrossRefGoogle Scholar
  2. 2.
    Polcar T, Parreira NMG, Novák R (2007) Surf Coat Technol 201:5228CrossRefGoogle Scholar
  3. 3.
    Randhawa H (1988) Surf Coat Technol 36:829CrossRefGoogle Scholar
  4. 4.
    Pradhan SK, Nouveau C, Vasin A, Djouadi MA (2005) Surf Coat Technol 200:141CrossRefGoogle Scholar
  5. 5.
    ASM Specialty Handbook: Stainless Steels (1994) ASM International, Materials Park, OH, USA, pp 1–12Google Scholar
  6. 6.
    Feng HP, Hsu CH, Lu JK, Shy YH (2003) Mater Sci Eng A347:123CrossRefGoogle Scholar
  7. 7.
    Aubert A, Gillet R, Gaucher A, Terrat JP (1983) Thin Solid Films 108:165CrossRefGoogle Scholar
  8. 8.
    Wei G, Rar A, Barnard JA (2001) Thin Solid Films 398–399:460CrossRefGoogle Scholar
  9. 9.
    Barata A, Cunha L, Moura C (2001) Thin Solid Films 398–399:501CrossRefGoogle Scholar
  10. 10.
    Lu FH, Chen HY, Hung CH (2003) J Vac Sci Technol A 21(3):671CrossRefGoogle Scholar
  11. 11.
    Chang KL, Chung SC, Lai SH, Shih HC (2004) Appl Surf Sci 236:406CrossRefGoogle Scholar
  12. 12.
    Gleiter H (2000) Acta Mater 48:1CrossRefGoogle Scholar
  13. 13.
    Komiya S, Ono S, Umezu N (1977) Thin Solid Films 45:473CrossRefGoogle Scholar
  14. 14.
    Oliver WC, Pharr GM (1992) J Mater Res 7:1564CrossRefGoogle Scholar
  15. 15.
    ASM handbook: metallography and microstructure (2004) ASM International, Materials Park, OH, USA, pp 684–691Google Scholar
  16. 16.
    Zhao ZB, Rek ZU, Yalisove SM, Bilello JC (2005) Thin Solid Films 472:96CrossRefGoogle Scholar
  17. 17.
    Mayrhofer PH, Tischler G, Mitterer C (2001) Surf Coat Technol 142–144:78CrossRefGoogle Scholar
  18. 18.
    Chen HY, Lu FH (2003) J Mater Sci Lett 22:817CrossRefGoogle Scholar
  19. 19.
    Herr W, Broszeit E (1997) Surf Coat Technol 97:335CrossRefGoogle Scholar
  20. 20.
    Lu FH, Chen HY (2001) Thin Solid Films 398–399:368CrossRefGoogle Scholar
  21. 21.
    Héau C, Fillit RY, Vaux F, Pascaretti F (1999) Surf Coat Technol 120–121:200CrossRefGoogle Scholar
  22. 22.
    Odén M, Almer J, Håkansson G, Olsson M (2000) Thin Solid Films 377–378:407CrossRefGoogle Scholar
  23. 23.
    Castaldi L, Kurapov D, Reiter A, Shklover V, Schwaller P, Patscheider J (2007) Surf Coat Technol. doi: j.surfcoat.2007.05.070
  24. 24.
    Mayrhofer PH, Willmann H, Mitterer C (2001) Surf Coat Technol 146:222CrossRefGoogle Scholar
  25. 25.
    Wang DY, Lin JH, Ho WY (1998) Thin Solid Films 332:295CrossRefGoogle Scholar
  26. 26.
    Barshilia BHC, Jain A, Rajam KS (2004) Vacuum 72:241CrossRefGoogle Scholar
  27. 27.
    Chen HY, Lu FH (2006) Thin Solid Films 515:2179CrossRefGoogle Scholar
  28. 28.
    Tuck JR, Korsunsky AM, Bull SJ, Davidson RI (2001) Surf Coat Technol 137:217CrossRefGoogle Scholar
  29. 29.
    Puchi-Cabrera ES (2002) Surf Coat Technol 160:177CrossRefGoogle Scholar
  30. 30.
    Korsunsky AM, McGurk MR, Bull SJ, Page TF (1998) Surf Coat Technol 99:171CrossRefGoogle Scholar
  31. 31.
    Ichimura H, Ando I (2001) Surf Coat Technol 145:88CrossRefGoogle Scholar
  32. 32.
    Tu JN, Duh JG, Tsai SY (2000) Surf Coat Technol 133–134:181CrossRefGoogle Scholar
  33. 33.
    Kostov KG, Ueda M, Lepiensky M, Soares PC Jr, Gomes GF, Silva MM, Reuther H (2004) Surf Coat Technol 186:204CrossRefGoogle Scholar
  34. 34.
    Herr W, Broszeit E (1997) Surf Coat Techn 97:669CrossRefGoogle Scholar
  35. 35.
    Cunha L, Andritschky M, Pischow K, Wang Z (1999) Thin Solid Films 355–356:465CrossRefGoogle Scholar
  36. 36.
    Lee JW, Tien SK, Kuo YC, Chen CM (2006) Surf Coat Technol 200:3330CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Carlo Paternoster
    • 1
    Email author
  • Alberto Fabrizi
    • 1
  • Raimondo Cecchini
    • 1
  • Mohamad El Mehtedi
    • 1
  • Patrick Choquet
    • 2
  1. 1.Department of MechanicsUniversità Politecnica delle MarcheAnconaItaly
  2. 2.ARCELOR Research LiègeLiègeBelgium

Personalised recommendations