Advertisement

Journal of Materials Science

, Volume 43, Issue 4, pp 1497–1500 | Cite as

Doping effect on magnetoelectric coefficient of Pb(Zr052Ti0.48)O3–Ni(1−x)ZnxFe2O4 particulate composite

  • Rashed Adnan Islam
  • Dwight Viehland
  • Shashank PriyaEmail author
Letter

Magnetoelectric [ME] particulate composites combine the magnetostrictive and the piezoelectric properties of materials [1, 2, 3], through product tensor properties [4]. Compared to in situ composites produced by unidirectional solidification of BaTiO3–CoFe2O4 [5, 6, 7, 8], sintered particulate composites are advantageous because of their cost-effectiveness, ease of fabrication, and better control of their process parameters. On the other hand, laminated magnetoelectric (ME) composites consisting of piezoelectric and magnetostrictive phases have gained attention because of their superior ME response [9, 10, 11, 12]. The laminates are fabricated by sandwiching and bonding piezoelectric plate/disk/fibers between two layers of magnetostrictive plates/disks/foils. Sintered particulate composites have inferior properties compared to the laminated ones, only because of drawbacks of low resistivity, interface defects, interface diffusion, and mismatch of elastic compliances. To enhance the ME...

Keywords

Ferrite CoFe2O4 NiFe2O4 Elastic Compliance Physical Property Measurement System 

Notes

Acknowledgement

The authors are sincerely thankful to Prof. Ping Liu’s research group (UTA) for their help in the magnetic characterization. This study was supported by the Army Research Office.

References

  1. 1.
    Ryu J, Carazo AV, Uchino K, Kim H (2001) J Electoceram 7:17CrossRefGoogle Scholar
  2. 2.
    Flores VC, Baques DB, Flores DC, Aquino JAM (2006) J Appl Phys 99:08J503CrossRefGoogle Scholar
  3. 3.
    Lupeiko TG, Lisnevskaya IV, Chkheidze MD, Zvyagintsev BI (1995) Inorg Mater 31:1139Google Scholar
  4. 4.
    Ryu J, Priya S, Uchino K, Kim H (2002) J Electroceram 8:107CrossRefGoogle Scholar
  5. 5.
    Boomgaard JVD, Van Run AMJG, Suchtelen JV (1976) Ferroelectrics 10:295CrossRefGoogle Scholar
  6. 6.
    Boomgaard JVD, Born RAJ (1978) J Mater Sci 13:1538CrossRefGoogle Scholar
  7. 7.
    Boomgaard JVD, Terrell DR, Born RAJ, Giller HFJI (1974) J Mater Sci 9:1705CrossRefGoogle Scholar
  8. 8.
    Van Run AMJG, Terrell DR, Scholing JH (1974) J Mater Sci 9:1710CrossRefGoogle Scholar
  9. 9.
    Ryu J, Priya S, Uchino K, Viehland D, Kim H (2002) J Kor Ceram Soc 39:813CrossRefGoogle Scholar
  10. 10.
    Srinivasan G, Rasmussen E, Levin B, Hayes R (2002) Phys Rev B 65:134402CrossRefGoogle Scholar
  11. 11.
    Dong SX, Zhai J, Li JF, Viehland D (2006) J Appl Phys 88:082907Google Scholar
  12. 12.
    Dong S, Zhai J, Li JF, Viehland D (2006) Appl Phys Lett 89:252904CrossRefGoogle Scholar
  13. 13.
    Islam RA, Priya S (2006) J Appl Ceram Tech 3(5):353CrossRefGoogle Scholar
  14. 14.
    Kramer WE, Hopkins RH, Daniel MR (1977) J Mater Sci Lett 12(2):409CrossRefGoogle Scholar
  15. 15.
    Newnham RE (1989) Rep Prog Phys 52:123CrossRefGoogle Scholar
  16. 16.
    Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, Massachusetts, USAGoogle Scholar
  17. 17.
    Islam RA, Priya S (2006) J Am Ceram Soc 89(10):3147CrossRefGoogle Scholar
  18. 18.
    Devan RS, Chogule BK (2007) J Appl Phys 101:014109CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Rashed Adnan Islam
    • 1
  • Dwight Viehland
    • 2
  • Shashank Priya
    • 2
    Email author
  1. 1.Materials Science and EngineeringUniversity of Texas at ArlingtonArlingtonUSA
  2. 2.Materials Science and EngineeringVirginia TechBlacksburgUSA

Personalised recommendations