Journal of Materials Science

, Volume 43, Issue 6, pp 1795–1801 | Cite as

Temperature-dependent refractive index of semiconductors

  • Nicolas Cherroret
  • Abhijit Chakravarty
  • Aravinda Kar


A single-oscillator Lorentz model is applied to four different semiconductors having diamond-like crystal structure to describe the temperature dependence of their refractive index between 300 and 600  K. Theoretical results are compared to previous experiments and to experiments carried out in this study for Si, Ge, GaAs, and InP. An efficient experimental method is also presented, enabling fast measurements of the refractive index of materials. Using the Yu-Brooks formalism and the energy bandgap at the X-point of the Brillouin zone, the temperature-dependent refractive indices are calculated and they agree well with experiments, particularly, considering the simplicity of the Lorentz model. However, there are discrepancies between the theory and experiment at high temperatures (near 600 K) in certain cases. This discrepancy may be due to the single-oscillator approximation. Additionally the effect of “self-energy” on the temperature dependence of the energy bandgap, such as the temperature-dependent damping of the oscillation of electrons, can be significant at higher temperatures.


Refractive Index GaAs Energy Bandgap Brillouin Zone Beam Splitter 


  1. 1.
    Yu PY, Cardona M (1970) Phys Rev 2:3193CrossRefGoogle Scholar
  2. 2.
    Fan HY (1951) Phys Rev 82:900CrossRefGoogle Scholar
  3. 3.
    Tsay YF, Mitra SS, Bendow B (1974) Phys Rev B 10:1476CrossRefGoogle Scholar
  4. 4.
    Della Corte G, Cocorullo G, Rendina I (1999) Phys Rev 74:1613Google Scholar
  5. 5.
    Ghosh G (1998) Handbook of thermo-optic coefficients of optical materials with applications. Academic PressGoogle Scholar
  6. 6.
    Della Corte FG, Cocorullo G, Iodice M, Rendina I (2000) Appl Phys Lett 77:1614CrossRefGoogle Scholar
  7. 7.
    Allen PB (1978) Phys Rev B 18:5217; Chakraborty B, Allen PB (1978) Phys Rev B 18:5225Google Scholar
  8. 8.
    Yu SC (1964) PhD thesis. Harvard University (unpublished)Google Scholar
  9. 9.
    Kim CK, Lautenschlager P, Cardonam M (1986) Solid State Commun 59:797CrossRefGoogle Scholar
  10. 10.
    Haug A (1972) Theoretical solid state physics, vol 1 and 2. Pergamon PressGoogle Scholar
  11. 11.
    McCaulley JA, Donnelly VM, Vernon M, Taha I (1994) Phys Rev B 49:7408CrossRefGoogle Scholar
  12. 12.
    Tsay YF, Bendow B, Mitra SS (1973) Phys Rev B 8:2688CrossRefGoogle Scholar
  13. 13.
    Wolf HF (1969) Silicon semiconductor data. Pergamon Press, OxfordGoogle Scholar
  14. 14.
    Engineering Physics 3F3, Experiment#2Google Scholar
  15. 15.
    Adachi S (2005) Properties of Group-IV, III–V and II–VI semiconductors. WileyGoogle Scholar
  16. 16.
    Magunov AN (1992) Opt Spectrosc 73:205Google Scholar
  17. 17.
    Chakravarty A, Quick NR, Kar A (2007) J Appl Phys 102:073111CrossRefGoogle Scholar
  18. 18.
    Lourenço SA, Dias IFL, Duarte JL, Laureto E, Poças LC, Toginho Filho DO, Leite JR (2004) Braz J Phys 34:517CrossRefGoogle Scholar
  19. 19.
    Lautenschlager P, Garriga M, Vina L, Cardona M (1987) Phys Rev B 36:4821CrossRefGoogle Scholar
  20. 20.
    Fröhlich H (1950) Phys Rev 79:845CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Nicolas Cherroret
    • 1
  • Abhijit Chakravarty
    • 2
  • Aravinda Kar
    • 3
  1. 1.Ecole Nationale Supérieure de Physique de Grenoble (ENSPG)St-Martin d’HèresFrance
  2. 2.Department of Electrical Engineering and Computer Science, Laser-Aided Manufacturing, Materials and Micro-Processing Laboratory (LAMMMP), College of Optics and Photonics/CREOLUniversity of Central FloridaOrlandoUSA
  3. 3.Department of Mechanical, Materials and Aerospace Engineering, College of Optics and Photonics, Center for Research and Education in Optics and Lasers (CREOL)University of Central FloridaOrlandoUSA

Personalised recommendations