Advertisement

Journal of Materials Science

, Volume 43, Issue 5, pp 1510–1514 | Cite as

Titanate nanotubes: preparation, characterization, and application in the detection of dopamine

  • Liling Niu
  • Mingwang Shao
  • Sheng Wang
  • Lei Lu
  • Huazhong Gao
  • Jun Wang
Article

Abstract

Titanate nanotubes were successfully synthesized via a hydrothermal process with the assistance of surfactant. These nanotubes with average length of several hundred nanometers and diameter of 10 nm were employed to modify glass carbon electrode and measure dopamine via electrochemistry method. The experiments showed ideal reversibility in cyclic voltammetry, which might be due to the decrease of the overvoltage of the electrode and increase of electron transference. The results illustrated the potential application in the detection of dopamine.

Keywords

Sodium Dodecyl Sulfate Glass Carbon Electrode Surfactant Sodium Dodecyl Sulfate Titanate Nanotubes Redox Peak Current 

Notes

Acknowledgements

Financial support from the National Natural Science Foundation of China (20571001), the Education Department (No. 2006KJ006TD) of Anhui Province and Anhui Provincial Natural Science Foundation (070414185) are appreciated.

References

  1. 1.
    Iijima S (1991) Nature 354:56CrossRefGoogle Scholar
  2. 2.
    Niederberger M, Muhr HJ, Krumeich F, Bieri F, Gunther D, Nesper R (2000) Chem Mater 12:1995CrossRefGoogle Scholar
  3. 3.
    Satishkumar BC, Govidaraj A, Vogl EM, Basumallick L, Rao CNR (1997) J Mater Res 12:604CrossRefGoogle Scholar
  4. 4.
    Kasuga T, Hiramatsu M, Hoson A (1998) Langmuir 14:3160CrossRefGoogle Scholar
  5. 5.
    Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1999) Adv Mater 11:1307CrossRefGoogle Scholar
  6. 6.
    Phillips PEM, Stuber GD, Heien MLAV, Wightman RM, Carelli RM (2003) Nature 422:614CrossRefGoogle Scholar
  7. 7.
    Shao MW, Li M, Ban HZ, Niu LL, Wang H, Pan SY (2007) J Mater Sci 42: 6961CrossRefGoogle Scholar
  8. 8.
    Lacroix M, Bianco P, Lojou E (1999) Electroanalysis 11:1068CrossRefGoogle Scholar
  9. 9.
    Kawagoe KT, Zimmerman JB, Wightman RM (1993) J Neurosci Methods 48:225CrossRefGoogle Scholar
  10. 10.
    Yuan S, Hu S (2004) Electrochim Acta 49:4287CrossRefGoogle Scholar
  11. 11.
    Liu AH, Wei MD, Honma I, Zhou HS (2006) Adv Funct Mater 16:371CrossRefGoogle Scholar
  12. 12.
    Sun XM, Li YD (2003) Chem Eur J 9:2229CrossRefGoogle Scholar
  13. 13.
    Ma R, Bando Y, Sasaki T (2003) Chem Phys Lett 380:577CrossRefGoogle Scholar
  14. 14.
    Sasaki T, Watanabe M, Komatsu Y, Fujiki Y (1985) Inorg Chem 24:2265CrossRefGoogle Scholar
  15. 15.
    Jiang LQ, Gao L, Sun J (2003) J Colloid Interf Sci 260:89CrossRefGoogle Scholar
  16. 16.
    Kim HM, Miyaji F, Kokubo T, Nakamura T (1997) J Mater Sci Mater Med 8:341CrossRefGoogle Scholar
  17. 17.
    Manuel O, Garcia-Ramos JV, Serna CJ (1992) J Am Ceram Soc 75:2010CrossRefGoogle Scholar
  18. 18.
    Su Y, Balmer ML, Bunker BC (2000) J Phys Chem B 104:8160CrossRefGoogle Scholar
  19. 19.
    Bavykin DV, Milsom EV, Marken F, Kim DH, Marsh DH, Riley DJ, Walsh FC, El-Abiary KH, Lapkin AA (2005) Electrochem Commun 7:1050CrossRefGoogle Scholar
  20. 20.
    Chen Q, Zhou W, Chen Q, Du G, Peng L (2002) Adv Mater 14:1208CrossRefGoogle Scholar
  21. 21.
    Zheng JB, Zhou XL (2007) Bioelectrochemistry 70:408CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Liling Niu
    • 1
  • Mingwang Shao
    • 1
  • Sheng Wang
    • 1
  • Lei Lu
    • 1
  • Huazhong Gao
    • 1
  • Jun Wang
    • 1
  1. 1.Anhui Key Laboratory of Functional Molecular Solids, and College of Chemistry and Materials ScienceAnhui Normal UniversityWuhuP.R. China

Personalised recommendations