Advertisement

Journal of Materials Science

, Volume 43, Issue 5, pp 1520–1524 | Cite as

Thermoelectric properties of perovskite oxides La1−xSrxCoO3 prepared by polymerlized complex method

  • A. J. Zhou
  • T. J. Zhu
  • X. B. ZhaoEmail author
Article

Abstract

P-type perovskite oxides La1−xSrxCoO3 (0 ≤ x ≤ 0.2) have been prepared using a polymerlized complex method and sintering. The Seebeck coefficient, electrical conductivity, and thermal conductivity of the oxides were studied from room temperature to 773 K. The ln(σT)−1/T relationships revealed small-polaron hopping mechanism for the higher Sr contents. Large Seebeck coefficients were observed in lightly Sr-doped samples. Sr doping greatly reduced the Seebeck coefficient and enhanced the electrical and thermal conductivity of the samples. The temperature-induced spin-state transition of Co3+ ions strongly influenced the transport properties. The highest ZT value found in this series of oxides was 0.046 at 300 K for x = 0.1.

Keywords

Thermoelectric Property Seebeck Coefficient LaCoO3 Measured Temperature Range Small Polaron Conduction 

Notes

Acknowledgements

The authors would like to thank Dr. E. Müller, Dr. C. Stiewe, and W. Schönau from Institute of Materials Research, German Aerospace Center (DLR), for the measurements of thermal properties. TJZ would like to thank Dr. Jian He from Department of Physics and Astronomy, Clemson University, USA, for the discussion and comments. This work was supported by the National Science Foundation of China (50471039, 50522203) and PFDP of the Education Ministry of China (20060335126).

References

  1. 1.
    DiSalvo FJ (1999) Science 285:703CrossRefGoogle Scholar
  2. 2.
    Sales BC (2002) Science 295:1248CrossRefGoogle Scholar
  3. 3.
    Yamashita O, Tomiyoshi S, Makita K (2003) J Appl Phys 93:368CrossRefGoogle Scholar
  4. 4.
    Sales BC, Mandrus D, Williams RK (1996) Science 272:1325CrossRefGoogle Scholar
  5. 5.
    Koga T, Cronin SB, Dresselhaus MS, Liu JL, Wang KL (2000) Appl Phys Lett 77:1490CrossRefGoogle Scholar
  6. 6.
    Androulakis J, Migiakis P, Giapintzakis J (2004) Appl Phys Lett 84:1099CrossRefGoogle Scholar
  7. 7.
    Terasaki I, Sasago Y, Uchinokura K (1997) Phys Rev B 56:12685CrossRefGoogle Scholar
  8. 8.
    Prevel M, Lemonnier S, Klein Y, Hebert S, Chateigner D, Ouladdiaf B, Noudem JG (2005) J Appl Phys 98:093706CrossRefGoogle Scholar
  9. 9.
    Hu YF, Sutter E, Si WD, Li Q (2005) Appl Phys Lett 87:171912CrossRefGoogle Scholar
  10. 10.
    Liu YH, Lin YH, Shi Z, Nan CW, Shen ZJ (2005) J Am Ceram Soc 88:1337CrossRefGoogle Scholar
  11. 11.
    Inagaki T, Miura K, Yoshida H, Maric R, Ohara S, Zhang X, Mukai K, Fukui T (2000) J Power Sources 86:347CrossRefGoogle Scholar
  12. 12.
    Wang F, Leppavuori S (1997) J Appl Phys 82:1293CrossRefGoogle Scholar
  13. 13.
    Chen CH, Bouwmeester HJM, van Doorn RHE, Kruidhof H, Burggraaf AJ (1997) Solid State Ionics 98:7CrossRefGoogle Scholar
  14. 14.
    Senarís-Rodríguez MA, Goodenough JB (1995) J Solid State Chem 118:323CrossRefGoogle Scholar
  15. 15.
    Teraoka Y, Zhang HM, Okamoto K, Yamazoe N (1988) Mater Res Bull 23:51CrossRefGoogle Scholar
  16. 16.
    Berggold K, Kriener M, Zobel C, Reichl A, Reuther M, Muller R, Freimuth A, Lorenz T (2005) Phys Rev B 72:155116CrossRefGoogle Scholar
  17. 17.
    Zhou AJ, Zhu TJ, Zhao XB (2006) Mater Sci Eng B 128:174CrossRefGoogle Scholar
  18. 18.
    Shannon RD, Prewitt CT (1969) Acta Cryst B25:925CrossRefGoogle Scholar
  19. 19.
    Senarís-Rodríguez MA, Goodenough JB (1995) J Solid State Chem 116:224CrossRefGoogle Scholar
  20. 20.
    Zhang X, Li XM, Chen TL, Chen LD (2006) J Cryst Growth 286:1CrossRefGoogle Scholar
  21. 21.
    Mineshige A, Kobune M, Fujii S, Ogumi Z, Inaba M, Yao T, Kikuchi K (1999) J Solid State Chem 142:374CrossRefGoogle Scholar
  22. 22.
    Koshibae W, Tsutsui K, Maekawa S (2000) Phys Rev B 62:6869CrossRefGoogle Scholar
  23. 23.
    Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Nature 413:597CrossRefGoogle Scholar
  24. 24.
    Takahata K, Iguchi Y, Tanaka D, Itoh T, Terasaki I (2000) Phys Rev B 61:12551CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.State Key Laboratory of Silicon Materials, Department of Materials Science and EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations