Journal of Materials Science

, Volume 43, Issue 5, pp 1701–1710 | Cite as

Phase composition and wear behavior of NiTi alloys

  • Stefano GialanellaEmail author
  • Gloria Ischia
  • Giovanni Straffelini


This study deals with the wear behavior of two NiTi shape memory alloys, one of them being martensitic, the other one austenitic at room temperature. Wear tests have been conducted with a disk-on-block geometry. The block was made of the NiTi alloy, whereas counterface disk materials were AISI M2 high-speed steel and a WC–Co hardmetal. From the evolution of the friction coefficient and temperature during the tests and from the characterization of the wear debris and traces, it has been possible to identify the main wear mechanisms. In the wear tests involving the M2 steel disk, both NiTi alloys display a transition, as a function of the applied load, from a mainly oxidation regime to a more complex situation, in which oxidation wear is accompanied by delamination of metallic alloy fragments. Higher wear rates of the shape memory alloys have been observed for the NiTi/WC–Co coupling. In this case, a transition from a mainly delamination wear to a regime featuring a mixture of delamination and oxidation wear has been observed.


Friction Coefficient Wear Rate Shape Memory Alloy Wear Mechanism Wear Test 



We wish to thank Dr. M. Piotto and Dr. M. Mazzanti for their valuable contribution to the present work. We also thank W. Vaona for DSC analyses, A. Casagranda for tensile tests, and C. Bressanini for ESEM observations respectively.


  1. 1.
    Duerig TW, Melton KN, Stockel S, Wayman CM (1990) Engineering aspects of shape memory alloys. Butterworth Heinemann, LondonGoogle Scholar
  2. 2.
    Van Humbeeck J (1999) Mater Sci Eng A A273–A275:134CrossRefGoogle Scholar
  3. 3.
    Lipscomb IP (1996) The application of shape memory alloys in medicine. Paston Publ., LondonGoogle Scholar
  4. 4.
    Oshida Y, Sachdeva R, Miyazaki S, Fukuyo S (1990) Mater Sci Forum 56–58:705Google Scholar
  5. 5.
    Oshida Y, Miyazaki S (1991) Corros Eng 40:1009CrossRefGoogle Scholar
  6. 6.
    Busch JD (1994) In: Proceedings of the First International Conference on Shape Memory and Superelastic Technologies, Pacific Grove, Ca, 1994. SMST Intnl. Comm. Publ., New York, p 259Google Scholar
  7. 7.
    Zhang X, Nie J, Hou G (2000) Mater Sci Forum 327–328:35CrossRefGoogle Scholar
  8. 8.
    Bellouard Y (2002) In: Schwartz M (ed) Encyclopedia of smart materials, vol 2. Wiley, New York, pp 620–644Google Scholar
  9. 9.
    Adachi Y, Unjoh S, Kondoh M (2000) Mater Sci Forum 327–328:31CrossRefGoogle Scholar
  10. 10.
    Li DY (1996) Scripta Mat 34(2):195CrossRefGoogle Scholar
  11. 11.
    Qian LM, Sun QP, Zhou ZR (2005) Tribol Lett 18(4):463CrossRefGoogle Scholar
  12. 12.
    Richman RH, Kung D, Rao AS (1995) Wear 181–183:80CrossRefGoogle Scholar
  13. 13.
    Lin HC, Wu SK, Yeh CH (1991) Wear 249:557CrossRefGoogle Scholar
  14. 14.
    Imbeni V, Martini C, Prandstaller D, Poli G, Trepanier C, Duerig TW (2003) Wear 254:1299CrossRefGoogle Scholar
  15. 15.
    Li DY (2003) Wear 255:617CrossRefGoogle Scholar
  16. 16.
    Qian L, Zhou Z, Sun Q (2005) Wear 259:309CrossRefGoogle Scholar
  17. 17.
    Wang HM, Cao F, Cai LX, Tang HB, Yu RL, Zhang LY (2003) Acta Mat 51:6319CrossRefGoogle Scholar
  18. 18.
    Paro JA, Gustafsson TE, Koskinen J (2004) J Mater Process Technol 150:309CrossRefGoogle Scholar
  19. 19.
    Paro JA, Gustafsson TE, Koskinen J (2004) J Mater Process Technol 153–154:622CrossRefGoogle Scholar
  20. 20.
    Bram M, Ahmad-Khanlou A, Buchkremer HP, Stöver D (2002) Mater Lett 57:647CrossRefGoogle Scholar
  21. 21.
    Wang HM, Liu YF (2002) Mater Sci Eng 338:126CrossRefGoogle Scholar
  22. 22.
    Ni W, Cheng Y-T, Lukitsch M, Weiner AM, Lev LC, Grummon D (2005) Wear 259:842CrossRefGoogle Scholar
  23. 23.
    Tan L, Crone WC (2002) Acta Mater 50:4449CrossRefGoogle Scholar
  24. 24.
    Cui ZD, Man HC, Yang XJ (2003) Appl Surf Sci 208–209:388CrossRefGoogle Scholar
  25. 25.
    Tan L, Crone DA, Crone WC (2003) Biomaterials 24:3931CrossRefGoogle Scholar
  26. 26.
    Sridharan L, Sridharan WC, Sridharan K (2002) J Mater Sci Mater Med 13:501CrossRefGoogle Scholar
  27. 27.
    Wu SK, Lin HC, Lee CY (1999) Surf Coat Technol 113:13CrossRefGoogle Scholar
  28. 28.
    Pelletier H, Muller D, Mille P, Grob JJ (2002) Surf Coat Technol 158–159:301CrossRefGoogle Scholar
  29. 29.
    Pelletier H, Muller D, Mille P, Grob JJ (2002) Surf Coat Technol 158–159:309CrossRefGoogle Scholar
  30. 30.
    Lin HC, Liao HM, Lin KM, He JL, Chen KC (1997) Surf Coat Technol 92:178CrossRefGoogle Scholar
  31. 31.
    Wu SK, Lin HC, Chu CL (1997) Surf Coat Technol 92:206CrossRefGoogle Scholar
  32. 32.
    Tan L, Shaw G, Sridharan K, Crone WC (2005) Mech Mater 37:1059CrossRefGoogle Scholar
  33. 33.
    Ezugwu EO, Wang ZM (1997) J Mater Process Technol 68:262CrossRefGoogle Scholar
  34. 34.
    Lin HC, Lin KM, Chen YC (2000) J Mater Process Technol 105:327CrossRefGoogle Scholar
  35. 35.
    Weinert K, Petzoldt V (2004) Mater Sci Eng 378:180CrossRefGoogle Scholar
  36. 36.
    Lin HC, Lin KM, Cheng IS (2001) J Mat Sci 36:399CrossRefGoogle Scholar
  37. 37.
    Rohde M, Schussler A (1997) Sens Actuators A 61:463CrossRefGoogle Scholar
  38. 38.
    Straffelini G, Dorigatti R, Gialanella S (1998) Mater Sci Technol 14:143CrossRefGoogle Scholar
  39. 39.
    Gialanella S, Straffelini G (1999) Met Mater Trans A 30A:2019CrossRefGoogle Scholar
  40. 40.
    Ashby MF (1992) Materials selection in mechanical design (Materials and process selection charts). Pergamon Press, Oxford, p 36Google Scholar
  41. 41.
    Stott FH, Wood GC (1978) Tribol Int 14:123Google Scholar
  42. 42.
    Hutchings IM (1992) Tribology. Edward Arnold Publ., LondonGoogle Scholar
  43. 43.
    Li DY (1998) Wear 221:116CrossRefGoogle Scholar
  44. 44.
    Rabinowicz E (1995) Friction and wear of materials, 2nd edn. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Stefano Gialanella
    • 1
    Email author
  • Gloria Ischia
    • 1
  • Giovanni Straffelini
    • 1
  1. 1.Dipartimento di Ingegneria dei Materiali e Tecnologie IndustrialiUniversità degli Studi di TrentoTrentoItaly

Personalised recommendations