Advertisement

Journal of Materials Science

, Volume 43, Issue 5, pp 1711–1715 | Cite as

ZnO microcolumns originated from self-assembled nanorods

  • Y. LiEmail author
  • W. F. Li
  • G. Xu
  • X. L. Ma
  • H. M. Cheng
Article

Abstract

ZnO microcolumns originating from self-assembled ZnO nanorods have been prepared by thermal evaporation method at 1,160 °C in a high-temperature tube furnace. The composition and microstructure of as-synthesized products were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. It is found that the as-synthesized product consists of ZnO microcolumns with a hexagonal wurtzite structure. The growth direction of the ZnO microcolumns is along the normal direction of \( \left( {10\overline 1 2} \right) \) lattice plane of hexagonal structure, while ZnO nanorods that constitute the former are along [0001] direction. Based on the structures’ analysis, the possible growth mechanism of ZnO microcolumns originating from nanorods was discussed. Photoluminescence and Raman studies have also been carried out for the ZnO microcolumns and normal commercial powders at room temperature. The discrepancy between Raman and PL spectra of ZnO microcolumns and commercial powders may attribute more relative defects in the microcolumns.

Keywords

Select Area Electron Diffraction Pattern Commercial Powder Striped Structure Thermal Evaporation Method Porous Alumina Template 

Notes

Acknowledgements

This work is supported by the National Outstanding Young Scientist Foundation for X. L. Ma (Grant No. 50325101) and the Special Funds for the Major State Basic Research Projects of China (Grant No. 2002CB613503). Doctor G. Liu and S. Ma are also acknowledged for the help in measuring the Raman spectra and PL spectra.

References

  1. 1.
    Srikant V, Clarke DR (1998) J Appl Phys 83:5447CrossRefGoogle Scholar
  2. 2.
    Yang TL, Zhang DH, Ma J, Ma HL, Chen Y (1998) Thin Solid Films 326:60CrossRefGoogle Scholar
  3. 3.
    Cordaro JF, Shim Y, May JE (1986) J Appl Phys 60:4186CrossRefGoogle Scholar
  4. 4.
    Verardi P, Nastase N, Gherasim C, Ghica C, Dinescu M, Dinu R, Flueraru C (1999) J Cryst Growth 197:523CrossRefGoogle Scholar
  5. 5.
    Pan ZW, Dai ZR, Wang ZL (2001) Science 291:1947CrossRefGoogle Scholar
  6. 6.
    Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H et al (2002) Science 292:1897CrossRefGoogle Scholar
  7. 7.
    Owen JHG, Miki K, Bowler DR (2006) J Mater Sci 41:4568. doi: https://doi.org/10.1007/s10853-006-0246-x CrossRefGoogle Scholar
  8. 8.
    Li Y, Ma XL (2005) Phys Status Solidi A 202:435CrossRefGoogle Scholar
  9. 9.
    Chander R, Raychaudhuri AK (2006) J Mater Sci 41:3623. doi: https://doi.org/10.1007/s10853-006-6218-3 CrossRefGoogle Scholar
  10. 10.
    Hu JQ, Li Q, Meng XM, Lee CS, Lee ST (2003) Chem Mater 15:305CrossRefGoogle Scholar
  11. 11.
    Heo YW, Norton DP, Tien LC, Kwon Y, Kang BS, Ren F, Pearton SJ, Laroche JR (2004) Mater Sci Eng R 47:1CrossRefGoogle Scholar
  12. 12.
    Zhao Q, Xu XY, Song XF, Zhang XZ, Yu DP, Li CP, Guo L (2006) Appl Phys Lett 88:033102CrossRefGoogle Scholar
  13. 13.
    Huang MH, Wu Y, Feick H, Tran N, Weber E, Yang PD (2001) Adv Mater 13:113CrossRefGoogle Scholar
  14. 14.
    Li Y, Meng GW, Zhang LD, Phillipp F (2000) Appl Phys Lett 76:2011CrossRefGoogle Scholar
  15. 15.
    Park WI, Kim DH, Jung SW, Yi GC (2002) Appl Phys Lett 80:4232CrossRefGoogle Scholar
  16. 16.
    Choopun S, Tabata H, Kawai T (2005) J Cryst Growth 274:167CrossRefGoogle Scholar
  17. 17.
    Yan M, Zhang HT, Widjaja EJ, Chang RPH (2003) J Appl Phys 94:5240CrossRefGoogle Scholar
  18. 18.
    Yuan HJ, Xie SS, Liu DF, Yan XQ, Zhou ZP, Ci LJ, Wang JX, Gao Y, Song L, Liu LF, Zhou WY, Wang G (2003) Chem Phys Lett 371:337CrossRefGoogle Scholar
  19. 19.
    Vanheuseden K, Seager CH, Waren WL, Tallant DR, Voigt JA (1996) J Appl Phys 79:7983CrossRefGoogle Scholar
  20. 20.
    Xing YJ, Xi ZH, Xue ZQ, Zhang XD, Song JH, Wang RM, Xu J, Song Y, Zhang SL, Yu DP (2003) Appl Phys Lett 83:1689CrossRefGoogle Scholar
  21. 21.
    Yang PD, Yan HQ, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He RR, Choi HJ (2002) Adv Funct Mater 12:323CrossRefGoogle Scholar
  22. 22.
    He FQ, Zhao YP (2006) J Phys D: Appl Phys 39:2105CrossRefGoogle Scholar
  23. 23.
    Monticone S, Tufen R, Kanaev AV (1998) J Phys Chem B 102:2854CrossRefGoogle Scholar
  24. 24.
    Hu JQ, Bando Y (2003) Appl Phys Lett 82:1401CrossRefGoogle Scholar
  25. 25.
    Tong YH, Liu YC, Shao CL, Mu RX (2006) Appl Phys Lett 88:123111CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Y. Li
    • 1
    Email author
  • W. F. Li
    • 1
  • G. Xu
    • 1
  • X. L. Ma
    • 1
  • H. M. Cheng
    • 1
  1. 1.Shenyang National Laboratory for Materials ScienceInstitute of Metal Research, Chinese Academy of SciencesShenyangP.R. China

Personalised recommendations