Journal of Materials Science

, Volume 43, Issue 10, pp 3474–3480 | Cite as

Determination of surface properties of various substrates using TiO2 nanorod coatings with tunable characteristics

  • Gianvito CaputoEmail author
  • Concetta Nobile
  • Raffaella Buonsanti
  • Tobias Kipp
  • Liberato Manna
  • Roberto Cingolani
  • P. Davide Cozzoli
  • Athanassia Athanassiou
NanoSmat 2007 - International Conference on Surfaces, Coatings and Nanostructured Materials


We present a novel approach to cover different substrates with thin light-sensitive layers that consist of organic-capped TiO2 nanorods (NRs). Such NR-based coatings exhibit an increasing initial hydrophobicity with increasing NR length, and they demonstrate a surface transition from this highly hydrophobic state to a highly hydrophilic one under selective UV–laser irradiation. This behaviour is reversed under long dark storage. Infrared spectroscopy measurements reveal that light-driven wettability changes are accompanied by a progressive hydroxylation of the TiO2 surface. The surfactant molecules that cover the NRs do not appear to suffer for any significant photocatalytic degradation.


TiO2 Contact Angle Water Contact Angle TiO2 Thin Film TiO2 Surface 


  1. 1.
    Zhang Z, Wang CC, Zakaria R, Ying JY (1998) J Phys Chem B 102:10871CrossRefGoogle Scholar
  2. 2.
    Kominami H, Muratami S, Kato J, Kera Y, Ohtani B (2002) J Phys Chem B 106:10501CrossRefGoogle Scholar
  3. 3.
    O’ Regan B, Gratzel M (1991) Nature 353:737CrossRefGoogle Scholar
  4. 4.
    Nakade S, Matsuda M, Kambe S, Saito Y, Kitamura T, Sakata T, Wada Y, Mori H, Yanagida S (2002) J Phys Chem B 106:10004CrossRefGoogle Scholar
  5. 5.
    Nelson J, Haque SA, Klug DR (2001) Phys Rev B 63:205CrossRefGoogle Scholar
  6. 6.
    Nelson J (1999) Phys Rev B 59:23CrossRefGoogle Scholar
  7. 7.
    Zhu Y, Shi J, Zhang Z, Zhang C, Zhang X (2002) Anal Chem 74:120CrossRefGoogle Scholar
  8. 8.
    Fujishima A, Honda K (1972) Nature 238:37CrossRefGoogle Scholar
  9. 9.
    (a) Moser WR (1990) Advanced catalysis and nanostructured materials. Academic Press, San Diego; (b) Schiavello M (1988) Photocatalysis and environment, trends and applications. Kluwer, Dordrecht; (c) Pelizzetti E, Serpone N (1989) Photocatalysis. Fundamentals and applications. Wiley, New YorkGoogle Scholar
  10. 10.
    Liang LF, Feng X, Liu J, Rieke PC, Fryxell GE (1998) Macromolecules 31:7845CrossRefGoogle Scholar
  11. 11.
    Sakai N, Wang R, Fujishima A, Watanabe T, Hashimoto K (1998) Langmuir 14:5918CrossRefGoogle Scholar
  12. 12.
    Wang R, Sakai N, Fujishima A, Watanabe T, Hashimoto K (1999) J Phys Chem B 103:2188CrossRefGoogle Scholar
  13. 13.
    Nakajima A, Watanabe T, Hashimoto K (2001) J Photochem Photobiol A Chem 146:129CrossRefGoogle Scholar
  14. 14.
    Sakai N, Fujishima A, Watanabe T, Hashimoto K (2001) J Phys Chem B 105:3023CrossRefGoogle Scholar
  15. 15.
    Nakajima A, Koizumi S, Watanabe T, Hashimoto K (2000) Langmuir 16:7048CrossRefGoogle Scholar
  16. 16.
    Sakai N, Fujishima A, Watanabe T, Hashimoto K (2003) J Phys Chem B 107:1028CrossRefGoogle Scholar
  17. 17.
    Miyauchi M, Nakajima A, Fujishima A, Hashimoto K, Watanabe T (2000) Chem Mater 12:3CrossRefGoogle Scholar
  18. 18.
    Wang R, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Nature 388:431CrossRefGoogle Scholar
  19. 19.
    Wang R, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1998) Adv Mater 10:135CrossRefGoogle Scholar
  20. 20.
    Parkin IP, Palgrave RG (2005) J Mater Chem 15:1689CrossRefGoogle Scholar
  21. 21.
    Rampaul A, Parkin IP, O’Neill SA, DeSouza J, Mills A, Elliott N (2003) Polyhedron 22:35CrossRefGoogle Scholar
  22. 22.
    Sirghi L, Hatanaka Y (2003) Surf Sci 53:L323CrossRefGoogle Scholar
  23. 23.
    Luca D, Mardare D, Iacomi F, Teodorescu CM (2006) Appl Surf Sci 252:6122CrossRefGoogle Scholar
  24. 24.
    Kemmitt T, Al-Salim NI, Waterland M, Kennedy VJ, Markwitz A (2004) Curr Appl Phys 4:189CrossRefGoogle Scholar
  25. 25.
    Mills A, Elliott N, Parkin IP, O’Neill SA, Clark RJ (2002) J Photochem Photobiol A Chem 151:171CrossRefGoogle Scholar
  26. 26.
    Yu J, Zhao X, Zhao Q, Wang G (2001) Mater Chem Phys 68:253CrossRefGoogle Scholar
  27. 27.
    Yu JC, Yu J, Ho W, Zhao J (2002) J Photochem Photobiol A Chem 148:331CrossRefGoogle Scholar
  28. 28.
    Dag O, Soten I, Celik O, Polarz S, Coombs N, Ozin GA (2003) Adv Funct Mater 13:30CrossRefGoogle Scholar
  29. 29.
    Gao Y, Masuda Y, Koumoto K (2004) Langmuir 20:3188CrossRefGoogle Scholar
  30. 30.
    Cebeci FC, Wu Z, Zhai L, Cohen RE, Rubner MF (2006) Langmuir 22:2856CrossRefGoogle Scholar
  31. 31.
    Allain E, Besson S, Durand C, Moreau M, Gacoin T, Boilot JP (2007) Adv Funct Mater 17:1CrossRefGoogle Scholar
  32. 32.
    Manna L, Scher EC, Li LS, Alivisatos AP (2002) J Am Chem Soc 124:7136CrossRefGoogle Scholar
  33. 33.
    Nelson J (2002) Curr Opin Solid State Mater Sci 6:87CrossRefGoogle Scholar
  34. 34.
    Seo JW, Jun YW, Ko SJ, Cheon J (2005) J Phys Chem B 109:5389CrossRefGoogle Scholar
  35. 35.
    Xu WX, Zhu S, Fu XC, Chen X (1999) Appl Surf Sci 148:253CrossRefGoogle Scholar
  36. 36.
    Bersani D, Lottici PP, Ding XZ (1998) Appl Phys Lett 72:73CrossRefGoogle Scholar
  37. 37.
    Xu CY, Zhang PX, Yan L (2001) J Raman Spectrosc 32:862CrossRefGoogle Scholar
  38. 38.
    Cassie ABD, Baxter S (1944) Trans Faraday Soc 40:546CrossRefGoogle Scholar
  39. 39.
    Cozzoli PD, Kornowski A, Weller H (2003) J Am Chem Soc 125:14533CrossRefGoogle Scholar
  40. 40.
    Murai M, Tamaki Y, Furube A, Hara K, Katoh R (2007) Catal Today 120:214CrossRefGoogle Scholar
  41. 41.
    Finnie KS, Cassidy DJ, Bartlett JR, Woolfrey JL (2001) Langmuir 17:816CrossRefGoogle Scholar
  42. 42.
    Panayotov DA, Yates JT (2005) Chem Phys Lett 410:11CrossRefGoogle Scholar
  43. 43.
    Wang C, Groenzin H, Shultz MJ (2003) Langmuir 19:7330CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Gianvito Caputo
    • 1
    • 2
    Email author
  • Concetta Nobile
    • 1
    • 2
  • Raffaella Buonsanti
    • 1
    • 2
  • Tobias Kipp
    • 3
  • Liberato Manna
    • 1
  • Roberto Cingolani
    • 1
  • P. Davide Cozzoli
    • 1
    • 2
  • Athanassia Athanassiou
    • 1
  1. 1.NNL—National Nanotechnology Laboratory of INFM-CNRLecceItaly
  2. 2.Scuola Superiore ISUFI, Distretto TecnologicoUniversity of SalentoLecceItaly
  3. 3.Institut fur Angewandte Physik und Zentrum fur MikrostrukturforschungUniversitat HamburgHamburgGermany

Personalised recommendations