Journal of Materials Science

, Volume 43, Issue 11, pp 3938–3945 | Cite as

Thermal reaction of SiC films with tungsten and tungsten–rhenium alloys

  • Jérome RogerEmail author
  • Fabienne Audubert
  • Yann Le Petitcorps
Intergranular and Interphase Boundaries in Materials


Solid-state reactions between SiC films and W–xRe (x = 0, 5 and 25 at%) substrates on thermal annealing between 1673 K and 1873 K for various durations have been investigated. SiC coatings were deposited on metallic wires by hot filament chemical vapour deposition (HFCVD) from a gas mixture of tetramethylsilane (TMS) and hydrogen at 1373 K under normal pressure. The interface zones were characterized using scanning electron and optical microscopies, X-ray diffraction and electron microprobe microanalysis. All analyses reveal that SiC reacts with substrates. Various metal silicides and carbides were formed in layered reaction and the presence of these phases was confirmed by electron probe microanalysis. The effects of rhenium on the reactivity were established by the determination of growth kinetics deducted from the thicknesses of reaction zones as a function of annealing time. It has been found that an increase in the diffusion kinetics and activation energy with the quantity of rhenium in the tungsten wire.


Reaction Zone Rhenium Diffusion Couple Reaction Layer Atomic Composition 



The authors wish to thank M. Lahaye (CeCaMA, Bordeaux) for his assistance in SEM and EPMA studies.


  1. 1.
    Goesmann F, Schmid-Fetzer R (1995) Mater Sci Eng B34:224CrossRefGoogle Scholar
  2. 2.
    Space RI, Slack GA (1960) In: O’Connor JR, Smiltens J (eds) Silicon carbide, a high-temperature semiconductor. Pergamon, New YorkGoogle Scholar
  3. 3.
    Ryan CE (1969) Mater Res Bull S1:4Google Scholar
  4. 4.
    Price RJ (1977) Nucl Technol 320:35Google Scholar
  5. 5.
    Sasaki K, Sakuma E, Misawa S, Yoshida S, Gonda S (1984) Appl Phys Lett 72:45Google Scholar
  6. 6.
    Geib KM, Wilson C, Long RG, Wilmsen W (1990) J Appl Phys 68:2796CrossRefGoogle Scholar
  7. 7.
    Tang WM, Zheng ZX, Ding HF, Jin ZH (2003) Mater Chem Phys 80:360CrossRefGoogle Scholar
  8. 8.
    Bhanumurthy K, Schmid-Fetzer R (2001) Composites 32A:569CrossRefGoogle Scholar
  9. 9.
    Chou TC, Joshi A, Wadsworth J (1991) J Mater Res 6(4):796CrossRefGoogle Scholar
  10. 10.
    van Loo FJJ, Smet FM, Rieck GD, Verspui G (1982) High Temp High Pres 14:25Google Scholar
  11. 11.
    Brewer L, Krikorian O (1956) J Electrochem Soc 103:38CrossRefGoogle Scholar
  12. 12.
    Baud L, Jaussaud C, Madar R, Bernard C, Chen JS, Nicolet MA (1995) Mater Sci Eng B29:126CrossRefGoogle Scholar
  13. 13.
    Searcy AW, Finnie LN (1962) J Am Ceram Soc 45(6):268CrossRefGoogle Scholar
  14. 14.
    Chen JS, Kolawa E, Nicolet M-A, Baud L, Jaussaud C, Madar R, Bernard C (1994) J Appl Phys 75(2):897CrossRefGoogle Scholar
  15. 15.
    Liu Z-K, Austin Chang Y (2000) J Alloys Compds 299:153CrossRefGoogle Scholar
  16. 16.
    Shepela A (1972) J Less-Common Met 26:33CrossRefGoogle Scholar
  17. 17.
    Schmid K, Roth J (2002) J Nuclear Mater 302:96CrossRefGoogle Scholar
  18. 18.
    Henry F, Armas B, Combescure C, Figueras A, Garelik S (1996) Surf Coat Tech 90:134CrossRefGoogle Scholar
  19. 19.
    Lee K-H, Yoon J-K, Lee J-K, Doh J-M, Hong K-T, Yoon W-Y (2004) Surf Coat Tech 187:146CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jérome Roger
    • 1
    • 2
    Email author
  • Fabienne Audubert
    • 2
  • Yann Le Petitcorps
    • 1
  1. 1.Université Bordeaux 1, Laboratoire des Composites Thermostructuraux, UMR 5801 (CNRS-SAFRAN-CEA-UB1)PessacFrance
  2. 2.Commissariat à l’Energie AtomiqueDEN/DEC/SPUA/LTEC, CadaracheSaint-Paul-Lez-DuranceFrance

Personalised recommendations