Journal of Materials Science

, Volume 43, Issue 5, pp 1587–1592 | Cite as

Proton and oxide-ionic conduction in Sr- and Zn-doped LaGaO3

  • Feng Zhang
  • Linluan Sun
  • Jianli Zhu
  • Bo Pan
  • Rui Xu
  • Guilin Ma


The ionic conduction behaviors in La0.9Sr0.1Ga0.9Zn0.1O3−α under different atmospheres at 600–1,000 °C were studied by various electrochemical methods including ac impedance, hydrogen and oxygen concentration cells, electrochemical hydrogen and oxygen pumping, etc. The proton conduction in this oxide was investigated for the first time. The hydrogen concentration cell and oxygen concentration cell showed stable electromotive forces close to the theoretical ones calculated from Nernst’s equation, indicating that the conduction was almost pure ionic under hydrogen atmosphere or dry oxygen atmosphere. The electrochemical hydrogen pumping rates coincided with the theoretical ones calculated from Faraday’s law, confirming that La0.9Sr0.1Ga0.9Zn0.1O3−α is a proton conductor under hydrogen atmosphere. A similar result for electrochemical oxygen pumping was obtained, indicating that it is an oxide-ionic conductor under dry oxygen atmosphere. The ionic conductivity was about 0.06 S cm−1 at 1,000 °C.


Proton Conduction Hydrogen Atmosphere pH2O Electrochemical Hydrogen Hydrogen Evolution Rate 



The present study was supported by the Natural Science Foundation of China (No. 20771079).


  1. 1.
    Iwahara H, Shimura T, Matsumoto H (2000) Electrochemistry 68:154Google Scholar
  2. 2.
    Marnellos G, Stoukides M (1998) Science 282:98CrossRefGoogle Scholar
  3. 3.
    Iwahara H, Esaka T, Uchida H, Maeda N (1981) Solid State Ionics 3/4:359CrossRefGoogle Scholar
  4. 4.
    Iwahara H, Uchida H, Ono K, Ogaki K (1988) J Electrochem Soc 135:529CrossRefGoogle Scholar
  5. 5.
    Iwahara H, Yajima T, Hibino T, Ozaki K, Suzuki H (1993) Solid State Ionics 61:65CrossRefGoogle Scholar
  6. 6.
    Lee WK, Nowick AS, Boatner LA (1986) Solid State Ionics 18/19:989CrossRefGoogle Scholar
  7. 7.
    Shimura T, Komori M, Iwahara H (1996) Solid State Ionics 86–88:685CrossRefGoogle Scholar
  8. 8.
    Shimura T, Suzuki K, Iwahara H (1998) Solid State Ionics 113–115:355CrossRefGoogle Scholar
  9. 9.
    Murugaraj P, Kreuer KD, He T et al (1997) Solid State Ionics 97:1CrossRefGoogle Scholar
  10. 10.
    Liang KC, Nowick AS (1993) Solid State Ionics 61:77CrossRefGoogle Scholar
  11. 11.
    Ma GL, Shimura T, Iwahara H (1999) Solid State Ionics 120:51CrossRefGoogle Scholar
  12. 12.
    Ma GL, Shimura T, Iwahara H (1999) Solid State Ionics 122:237CrossRefGoogle Scholar
  13. 13.
    Nomura K, Takeuchi T, Tanase S, Kakeyama H et al (2002) Solid State Ionics 154–155:647CrossRefGoogle Scholar
  14. 14.
    Ishihara T, Matsuda H, Takita Y (1994) J Am Chem Soc 116:3801CrossRefGoogle Scholar
  15. 15.
    Ma GL, Zhang F, Zhu JL, Meng GY (2006) Chem Mater 18:6006CrossRefGoogle Scholar
  16. 16.
    Sebastian L, Shukla AK et al (2002) Bull Mater Sci 23:169CrossRefGoogle Scholar
  17. 17.
    Feng M, Goodenough JB (1994) Eur J Solid State Inorg Chem 31:663Google Scholar
  18. 18.
    Matsumoto H, Hayashi H et al (2003) Solid State Ionics 161:93CrossRefGoogle Scholar
  19. 19.
    Iwahara H, Asakura Y et al (2004) Solid State Ionics 168:299CrossRefGoogle Scholar
  20. 20.
    Schober T (2003) Solid State Ionics 162–163:277CrossRefGoogle Scholar
  21. 21.
    Matsumoto H, Iida Y et al (2000) Solid State Ionics 127:345CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Feng Zhang
    • 1
    • 2
  • Linluan Sun
    • 1
  • Jianli Zhu
    • 1
  • Bo Pan
    • 1
  • Rui Xu
    • 1
  • Guilin Ma
    • 1
  1. 1.Key Laboratory of Organic Synthesis of Jiangsu Province, School of Chemistry and Chemical EngineeringSuzhou UniversitySuzhouChina
  2. 2.Analysis and Testing CenterSuzhou UniversitySuzhouChina

Personalised recommendations