Journal of Materials Science

, Volume 43, Issue 5, pp 1568–1575 | Cite as

The strain rate and temperature dependence of microstructural evolution of Ti–15Mo–5Zr–3Al alloy

  • Woei-Shyan Lee
  • Chi-Feng Lin
  • Tao-Hsing Chen
  • Hsin-Hwa Hwang


A compressive split-Hopkinson pressure bar apparatus and transmission electron microscopy (TEM) are used to investigate the deformation behaviour and microstructural evolution of Ti–15Mo–5Zr–3Al alloy deformed at strain rates ranging from 8 × 102 s−1 to 8 × 103 s−1 and temperatures between 25 °C and 900 °C. In general, it is observed that the flow stress increases with increasing strain rate, but decreases with increasing temperature. The microstructural observations reveal that the strengthening effect evident in the deformed alloy is a result, primarily, of dislocations and the formation of α phase. The dislocation density increases with increasing strain rate, but decreases with increasing temperature. Additionally, the square root of the dislocation density varies linearly with the flow stress. The amount of α phase increases with increasing temperature below the β transus temperature. The maximum amount of α phase is formed at a temperature of 700 °C and results in the minimum fracture strain under the current loading conditions.


Dislocation Density Flow Stress High Strain Rate Deformation Temperature Fracture Strain 



The authors gratefully acknowledge the financial support provided to this study by the National Science Council (NSC) of Taiwan under contract No. NSC-93-2212-E006-076. Particular appreciation is also extended to Kobe Steel Ltd., Japan, for their supply of the Ti–15Mo–5Zr–3Al alloy bars.


  1. 1.
    Steinemann SG (1984) Ti Sci Tech 2:1327Google Scholar
  2. 2.
    Dobbs HS, Scales JT (1983) In: ASTM. Philadelphia, 1983, p 173Google Scholar
  3. 3.
    Nichols KG, Puleo DA (1997) J Biomed Mater Res 35:256CrossRefGoogle Scholar
  4. 4.
    Katsuhiko M, Kenji D, Tomiharu M, Yoshio S (2002) Mater Trans 43:2936CrossRefGoogle Scholar
  5. 5.
    Kim HM, Takadama H, Kokubo T, Nishiguchi S, Nakamura T (2000) Biomaterials 21:353CrossRefGoogle Scholar
  6. 6.
    Murr LE (1978) Scripta Mater 12:201CrossRefGoogle Scholar
  7. 7.
    Lee WS, Shyu JC, Chiou ST (2000) Scripta Mater 42:51CrossRefGoogle Scholar
  8. 8.
    Boyer R, Welsch G, Collings EW (1994) In: Materials properties handbook: Titanium alloys. Materials Park, ASM InternationalGoogle Scholar
  9. 9.
    Ikeda M, Komatsu SY, Sugimoto T, Hasegawa M (1998) Mater Sci Eng A 243:140CrossRefGoogle Scholar
  10. 10.
    Komatsu Shin-ya, Ikeda M, Sugimoto T, Kamei K, Maesaki O, Kojima Masa-aki (1996) Mater Sci Eng A 213:61CrossRefGoogle Scholar
  11. 11.
    Ikeda M, Komatsu Shin-ya, Sugimoto T, Hasegawa M (1998) Mater Sci Eng A 243:140CrossRefGoogle Scholar
  12. 12.
    Lindholm US, Yeakly LW (1968) Exp Mech 8:1CrossRefGoogle Scholar
  13. 13.
    Chiddister JL, Malvern LE (1963) Exp Mech 3:81CrossRefGoogle Scholar
  14. 14.
    Lee WS, Lin CF (1998) Mater Sci Eng A 241:48CrossRefGoogle Scholar
  15. 15.
    Ham RK (1961) Philos Mag 6:1183CrossRefGoogle Scholar
  16. 16.
    Nishimura T, Nishigaki M, Moriguchi Y (1982) R&D Technical report, Kobe Steel, vol 32, p 52Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Woei-Shyan Lee
    • 1
  • Chi-Feng Lin
    • 2
  • Tao-Hsing Chen
    • 1
  • Hsin-Hwa Hwang
    • 1
  1. 1.Department of Mechanical EngineeringNational Cheng Kung UniversityTainanTaiwan
  2. 2.National Center for High-Performance ComputingHsin-ShiTaiwan

Personalised recommendations