Advertisement

Journal of Materials Science

, Volume 43, Issue 12, pp 4135–4142 | Cite as

Effect of particle size on kinetics crystallization of an iron-rich glass

  • M. RomeroEmail author
  • M. Kovacova
  • J. Ma. Rincón
Rees Rawlings Festschrift

Abstract

The effect of glass particle size on the crystallization kinetics of an iron-rich glass from a nickel leaching waste has been investigated by means of differential thermal analysis (DTA). The results show that the crystallization of a pyroxene phase occurs by bulk nucleation from a constant number of nuclei. The crystallization mode and the dimensionality of crystals are strongly dependent on the glass particle size, 100 μm being the critical size. Glass fractions with particle size >100 μm show three-dimensional crystal growth controlled by diffusion, whereas a particle size <100 μm leads to an interface reaction mechanism with two-dimensional growth of crystals.

Keywords

Differential Thermal Analysis Crystallization Fraction Crystallization Kinetic Differential Thermal Analysis Curve Particle Size Fraction 

Notes

Acknowledgement

This investigation has been carried out in the frame of a co-operation project between the Spanish Council for Scientific Research (CSIC) and the Slovak Academy of Sciences (SAS).

References

  1. 1.
    Partridge G (1994) Glass Technol 35:116Google Scholar
  2. 2.
    Partridge G (1994) Glass Technol 35:171Google Scholar
  3. 3.
    James PF (1995) J Non-Cryst Solids 181:1CrossRefGoogle Scholar
  4. 4.
    Pannhorst W (1997) J Non-Cryst Solids 219:198CrossRefGoogle Scholar
  5. 5.
    Höland W, Beall G (2002) In: Glass-ceramic technology. The American Ceramic Society, OhioGoogle Scholar
  6. 6.
    Bocola W, Donato A (1972) Energia Nucleare 19(6):390Google Scholar
  7. 7.
    Donato A, Bocola W (1972) Energia Nucleare 19(7):459Google Scholar
  8. 8.
    Hidalgo M, Rincón JMA (1987) Bol Soc Esp Ceram Vidr 26:227Google Scholar
  9. 9.
    Donald IW, Metcalfe BL, Taylor RNJ (1997) J Mater Sci 32:5851. doi: https://doi.org/10.1023/A:1018646507438 CrossRefGoogle Scholar
  10. 10.
    Hrma P, Crum JV, Bates DJ, Bredt PR, Greenwood LR, Smith HD (2005) J Nucl Mater 345(1):19CrossRefGoogle Scholar
  11. 11.
    Hrma P, Crum JV, Bredt PR, Greenwood LR, Arey BW, Smith HD (2005) J Nucl Mater 345(1):31CrossRefGoogle Scholar
  12. 12.
    Kaushik CP, Mishra RK, Sengupta P, Kumar A, Das D, Kale GB, Raj K (2006) J Nucl Mater 358(2–3):129CrossRefGoogle Scholar
  13. 13.
    Rawlings RD, Wu P, Boccaccini AR (2006) J Mater Sci 41(3):733. doi: https://doi.org/10.1007/s10853-006-6554-3 CrossRefGoogle Scholar
  14. 14.
    Romero M, Rincón JMA (1999) J Am Ceram Soc 82:1313CrossRefGoogle Scholar
  15. 15.
    Karamanov A, Taglieri G, Pelino M (1999) J Am Ceram Soc 82:3012CrossRefGoogle Scholar
  16. 16.
    Karamanov A, Pisciella P, Pelino M (2000) J Eur Ceram Soc 20:2233CrossRefGoogle Scholar
  17. 17.
    Kavouras P, Loannidis TA, Kehagias T, Tsilika I, Chrissafis K, Kokkou S, Zouboulis A, Karakostas T (2007) J Eur Ceram Soc 27(5):2317CrossRefGoogle Scholar
  18. 18.
    Kavouras P, Kehagias T, Tsilika I, Kaimakamis G, Chrissafis K, Kokkou S, Papadopoulos D, Karakostas T (2007) J Hazard Mater 139(3):424CrossRefGoogle Scholar
  19. 19.
    Pelino M, Karamanov A, Pisciella P, Crisucci S, Zonetti D (2002) Waste Manage 22(8):945CrossRefGoogle Scholar
  20. 20.
    Karamanov A, Aloisi M, Pelino M (2007) J Hazard Mater 140(1–2):333CrossRefGoogle Scholar
  21. 21.
    Francis AA, Rawlings RD, Sweeney R, Boccaccini AR (2004) J Non-Cryst Solids 333:187CrossRefGoogle Scholar
  22. 22.
    Surinach S, Baro MD, Clavaguera MT, Clavaguera N (1983) J Non-Cryst Solids 58:209CrossRefGoogle Scholar
  23. 23.
    Ligero RA, Vazques J, Casas-Ruiz M, Jiménez-Garay RA (1991) J Mater Sci 26:211. doi: https://doi.org/10.1007/BF00576054 CrossRefGoogle Scholar
  24. 24.
    Campos AL, Silva NT, Melo FCL, Oliveira MAS, Thim GP (2002) J Non-Cryst Solids 304:9CrossRefGoogle Scholar
  25. 25.
    Wei P, Rongti L (1999) Mater Sci Eng A 271:298CrossRefGoogle Scholar
  26. 26.
    Romero M, Martín-Márquez J, Rincón JMA (2006) J Eur Ceram Soc 26:1647CrossRefGoogle Scholar
  27. 27.
    Matusita K, Sakka S, Matsui Y (1975) J Mater Sci 10:961. doi: https://doi.org/10.1007/BF00823212 CrossRefGoogle Scholar
  28. 28.
    Matusita K, Sakka S (1979) Phys Chem Glasses 20:81Google Scholar
  29. 29.
    Matusita K, Sakka S (1980) J Non-Cryst Solids 38–39:741CrossRefGoogle Scholar
  30. 30.
    Deer WA, Howie RA, Zussman J (1992) In: The rock-forming minerals. Pearson Education Limited, Essex, p 170Google Scholar
  31. 31.
    Romero M, Rincon JMA (1998) J Eur Ceram Soc 18:153CrossRefGoogle Scholar
  32. 32.
    Karamanov A, Pelino M (2001) J Non-Cryst Solids 281:139CrossRefGoogle Scholar
  33. 33.
    Rincón JMA (1992) Polym Plast Technol Eng 31:309CrossRefGoogle Scholar
  34. 34.
    Matusita K, Miura K, Komatsu T (1985) Thermochim Acta 88:283CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Group of Glassy and Ceramic Materials, Department of Building Construction SystemsInstitute Eduardo Torroja for Construction Sciences-CSICMadridSpain
  2. 2.Department of Physical and Physicochemical Mineral Processing Methods, Institute of GeotechnicsSlovak Academy of SciencesKosiceSlovak Republic

Personalised recommendations