Journal of Materials Science

, Volume 43, Issue 4, pp 1175–1179 | Cite as

Estimation of lattice strain in nanocrystalline silver from X-ray diffraction line broadening

  • V. BijuEmail author
  • Neena Sugathan
  • V. Vrinda
  • S. L. Salini


The lattice strain contribution to the X-ray diffraction line broadening in nanocrystalline silver samples with an average crystallite size of about 50 nm is studied using Williamson-Hall analysis assuming uniform deformation, uniform deformation stress and uniform deformation energy density models. It is observed that the anisotropy of the crystallite should be taken into account, while separating the strain and particle size contributions to line broadening. Uniform deformation energy density model is found to model the lattice strain appropriately. The lattice strain estimated from the interplanar spacing data are compared with that estimated using uniform-energy density model. The lattice strain in nanocrystalline silver seems to have contributions from dislocations over and above the contribution from excess volume of grain boundaries associated with vacancies and vacancy clusters.


Lattice Strain Excess Volume Vacancy Cluster Uniform Deformation Nanocrystalline Sample 


  1. 1.
    Quin W, Szpunar JA (2005) Phil Mag Lett 85:649CrossRefGoogle Scholar
  2. 2.
    Zhao YA, Lu K (1997) Phys Rev B 56:14330CrossRefGoogle Scholar
  3. 3.
    Lu K, Sui ML (1995) Acta Metall Mater 43:43CrossRefGoogle Scholar
  4. 4.
    Eckert J, Holzer JC, Krill CE (1992) J Mater Res 7:1751CrossRefGoogle Scholar
  5. 5.
    Hellstorm E, Fecht HJ, Fu Z (1989) J Appl Phys 65:305CrossRefGoogle Scholar
  6. 6.
    Nazrov AA, Romanov AE, Valiev RR (1994) Nanostruct Mater 4:93CrossRefGoogle Scholar
  7. 7.
    Zorn G (1988) Aust J Phys 41:237CrossRefGoogle Scholar
  8. 8.
    Chipara SJ, Bish DL (1991) Adv X-ray Anal 34:473Google Scholar
  9. 9.
    Wiliamson GK, Hall WH (1953) Acta Meatall 1:22CrossRefGoogle Scholar
  10. 10.
    Klug HP, Alexander LE (1974) In: X-ray diffraction procedure for polycrystalline and amorphous materials. Wiley, New YorkGoogle Scholar
  11. 11.
    Rosenberg Yu, Machavariant VSh, Voronel A, Garber S, Rubshtein A, Frenkel AI, Stern EA (2000) J Phys: Condens Mater 12:8081Google Scholar
  12. 12.
    Love AEH (1944) In: A treatise on the mathematical theory of elasticity. Dover, New YorkGoogle Scholar
  13. 13.
    Landollt-Börnstein New Series 1979, vol 11. Springer, BerlinGoogle Scholar
  14. 14.
    Dapiaggi M, Geiger CA, Artioli G (2005) Am Miner 90:506CrossRefGoogle Scholar
  15. 15.
    Oleszak D, Shingu PH (1996) J Appl Phys 79:2975CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • V. Biju
    • 1
    • 2
    Email author
  • Neena Sugathan
    • 3
  • V. Vrinda
    • 4
  • S. L. Salini
    • 4
  1. 1.Department of PhysicsGovernment Polytechinc CollegePerumbavoor, ErnakulamIndia
  2. 2.Department of PhysicsUniversity of KeralaThiruvananthapuramIndia
  3. 3.Departmet of PhysicsGovernment College for WomenThiruvananthapuramIndia
  4. 4.Department of PhysicsSree Narayana CollegeKollamIndia

Personalised recommendations