Advertisement

Journal of Materials Science

, Volume 43, Issue 4, pp 1406–1420 | Cite as

PET recycled and processed from flakes with different amount of water uptake: characterization by DSC, TG, and FTIR-ATR

  • Adhemar Ruvolo-FilhoEmail author
  • Priscila S. Curti
Article

Abstract

Recycled PET from bottles was processed from flakes, which containing different amounts of water uptake. After this process, they are subjected to characterization by differential scanning calorimetry (DSC), thermogravimetry (TG), and Fourier-transform infrared spectroscopy with an attenuated total reflectance accessory (FTIR-ATR). From the DSC and TG results it can be postulate an increase in the proportion of short-molecular-weight distribution in the PET chains, due to the hydrolytic degradation of recycled PET during the thermopressing in presence of water. This hydrolytic degradation probably formed more polar groups on the surface of the processed and recycled PET, like carboxyl groups, as observed by FTIR-ATR.

Keywords

Differential Scanning Calorimetry Differential Scanning Calorimetry Analysis Hydrolytic Degradation Thermooxidative Degradation Rigid Amorphous Phase 

References

  1. 1.
    https://doi.org/www.abepet.com.br/reciclagem, accessed on February 6, 2007
  2. 2.
    https://doi.org/www.cempre.org.br, accessed on February 6, 2007
  3. 3.
    La Mantia FP, Vinci M (1994) Polym Degrad Stab 45(1):121CrossRefGoogle Scholar
  4. 4.
    Torres N, Robin JJ, Boutevin B (2000) Eur Polym J 36(10):2075CrossRefGoogle Scholar
  5. 5.
    Spinacé da Silva MA, Paoli de MA (2005) Química Nova 28(1):65CrossRefGoogle Scholar
  6. 6.
    Brasil. Agência Nacional de Vigilância Sanitária. Resolução n° 105 – Diário Oficial da República Federativa do Brasil, Seção 1, 21, Brasília-DF, 20 maio (1999). Availabe at: https://doi.org/www.anvisa.gov.br, accessed on September 15, 2006
  7. 7.
    Yoshioka T, Okayama N, Okuwaki A (1998) Ind Eng Chem Res 37(2):336CrossRefGoogle Scholar
  8. 8.
    Yoshioka T, Motoki T, Okuwaki A (2001) Ind Eng Chem Res 40(1):75CrossRefGoogle Scholar
  9. 9.
    Mancini SD, Zanin M (2002) Polím: Ciên Tecnol 12(1):34CrossRefGoogle Scholar
  10. 10.
    Kao C-Y, Wan B-Z, Cheng W-H (1998) Ind Eng Chem Res 37(4):1228CrossRefGoogle Scholar
  11. 11.
    Wan B-Z, Kao C-Y, Cheng W-H (2001) Ind Eng Chem Res 40(2):509CrossRefGoogle Scholar
  12. 12.
    Mishra S, Goje AS (2003) Polym React Eng 11(4):963CrossRefGoogle Scholar
  13. 13.
    Yang Y, Lu Y, Xiang H, Xu Y, Li Y (2002) Polym Degrad Stab 75(1):185CrossRefGoogle Scholar
  14. 14.
    Genta M, Iwaya T, Sasaki M, Goto M, Hirose T (2005) Ind Eng Chem Res 44(11):3894CrossRefGoogle Scholar
  15. 15.
    Castro REN, Vidotti GJ, Rubira AF, Muniz EC (2006) J Appl Polym Sci 101(3):2009CrossRefGoogle Scholar
  16. 16.
    Hu L-C, Oku A, Yamada E (1997) Polym J 29(9):708CrossRefGoogle Scholar
  17. 17.
    Goje AS, Thakur SA, Patil TM, Mishra S (2003) J Appl Polym Sci 90(12):3437CrossRefGoogle Scholar
  18. 18.
    Goje AS, Chauhan YP, Mishra S (2004) Polym-Plast Technol Eng 43(1):95CrossRefGoogle Scholar
  19. 19.
    Villain F, Coudane J, Vert M (1994) Polym Degrad Stab 43(3):431CrossRefGoogle Scholar
  20. 20.
    Ruvolo-Filho A, Carvalho de GM (1999) J Macromol Sci − Phys B 38(3):305CrossRefGoogle Scholar
  21. 21.
    Edge M, Wiles R, Allen NS, Mcdonald WA, Mortlock SV (1996) Polym Degrad Stab 53(2):141CrossRefGoogle Scholar
  22. 22.
    Dzieciol M, Trzeszczynski J (1998) J Appl Polym Sci 69(12):2377CrossRefGoogle Scholar
  23. 23.
    Campanelli JR, Kamal MR, Cooper DG (1993) J Appl Polym Sci 48(3):443CrossRefGoogle Scholar
  24. 24.
    Ruvolo-Filho AC, Soares K (2004) BR Patent, PI 0400074-9, 2004Google Scholar
  25. 25.
    Ruvolo-Filho A, Curti PS (2006) Ind Eng Chem Res 45(24):7985CrossRefGoogle Scholar
  26. 26.
    Curti PS, Ruvolo-Filho A (2006) Polím Ciênc Tecnol 26(4):276CrossRefGoogle Scholar
  27. 27.
    Oku A, Hu L-C, Yamada E (1997) J Appl Polym Sci 63(5):595CrossRefGoogle Scholar
  28. 28.
    Goje AS, Mishra S (2003) Macromol Mat Eng 288(4):326CrossRefGoogle Scholar
  29. 29.
    Kumar S, Guria C (2005) J Macromol Sci Part A: Pure Appl Chem 42(3):237CrossRefGoogle Scholar
  30. 30.
    Carvalho de GM (2000) Correlação entre comportamento térmico, espessura, propriedades de transporte e a morfologia em filmes de poli(etileno tereftalato). Tese de doutorado, Universidade Federal de São Carlos, SP, BrasilGoogle Scholar
  31. 31.
    Standard Test Method for Decomposition Kinetics by Thermogravimetry. Método E 1641-99 (ASTM)Google Scholar
  32. 32.
    Sammon C, Yarwood J, Everall N (2000) Polym Degrad Stab 67(1):149CrossRefGoogle Scholar
  33. 33.
    Khanna YP, Kuhn WP (1997) J Polym Sci – Part B: Polym Phys 35(14):2219CrossRefGoogle Scholar
  34. 34.
    Operation Manual for TGA 2050-TA InstrumentsGoogle Scholar
  35. 35.
    Hatakeyama T, Quinn FX (1995) Thermal analysis – fundamentals and applications to polymer science. Wiley, New YorkGoogle Scholar
  36. 36.
    Arii T, Ichihara S, Nakagawa H, Fujii N (1998) Thermochim Acta 319(1–2):139CrossRefGoogle Scholar
  37. 37.
    Saha B, Ghoshal AK (2005) Chem Eng J 111(1):39CrossRefGoogle Scholar
  38. 38.
    Saha B, Maiti AK, Ghoshal AK (2006) Thermochim Acta 444(1):46CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Group of Processing and Properties in Polymer, Department of Chemistry, Center of Exact Sciences and TechnologyFederal University of São CarlosSão CarlosBrazil

Personalised recommendations