Advertisement

Journal of Materials Science

, Volume 43, Issue 4, pp 1249–1258 | Cite as

The effect of manganese on the precipitation of Mg17Al12 phase in magnesium alloy AZ 91

  • Y. Tamura
  • Y. Kida
  • H. Tamehiro
  • N. Kono
  • H. SodaEmail author
  • A. McLean
Article

Abstract

Non-uniform continuous precipitation of the β-phase is known to occur within the solution-treated grains of AZ91 alloys during aging. In the present study, the segregation profiles of solute elements in the as-cast, solution heat-treated, and aged specimens of AZ91E were examined by electron probe micro analysis. The results were correlated with optical and SEM observations of the microstructures. It was found that the dendrite cores of the cast structure were richer in manganese concentration and these manganese-rich regions remained unchanged even after solution heat-treatment for 24 h at 410 °C, while the segregated aluminum and zinc in the interdendritic regions of the cast structure diffused homogeneously into the matrix grains. It was also found that the regions of grains that were richer in manganese were a source of preferential nucleation for β-precipitates. Thus, the cause of the non-uniform distribution of β-phase precipitates during aging is attributed to the solute segregation of manganese during solidification.

Keywords

Manganese Magnesium Alloy Interdendritic Region Discontinuous Precipitation Solute Segregation 

Notes

Acknowledgements

The financial support provided under the Promotion of Interactive Research Projects by the Ministry of Education, Culture, Sports, Science and Technology of Japan is gratefully acknowledged. Appreciation is also expressed to the Natural Sciences and Engineering Research Council of Canada for their support.

References

  1. 1.
    Hansen RS (1992) In: Mordike BL, Hehmann F (eds) Magnesium alloys and their applications. DGM Informationsgesellschaft mbh, Germany, p 111Google Scholar
  2. 2.
    Hutchinson CR, Nie JF, Gorsse S (2005) Metall Mater Trans 36A:2093CrossRefGoogle Scholar
  3. 3.
    Kaya AA, Yucel O, Eliezer D, Aghion E (2004) In: Kainer KU (ed) Magnesium and their applications. Proceedings of the 6th international conference, Wiley-Vch Verlag GmbH & Co., Weinhem, Germany, p 150Google Scholar
  4. 4.
    Celotto S (2000) Acta Mater 48:1775CrossRefGoogle Scholar
  5. 5.
    Clark JB (1968) Acta Metall 16:141CrossRefGoogle Scholar
  6. 6.
    Celotto S, Bastow TJ (2001) Acta Mater 49:41CrossRefGoogle Scholar
  7. 7.
    Bettles CJ (1998) In: Mordike BL, Kainer KU (eds) Magnesium alloys and their applications. Proceedings volume sponsored by Volkswagen AG, Werkstoff-Informationsgesellschaft mbH, Frankfurt, Germany, p 265Google Scholar
  8. 8.
    Guangyin Y, Yangshan S, Wenjiang D (2000) Mater Sci Eng A 308:38CrossRefGoogle Scholar
  9. 9.
    Betteles CJ, Humble P, Nie JF (1997) In: Lorimer GW (ed) Proceedings of the third international magnesium conference. The Institute of Materials, London, UK, p 403Google Scholar
  10. 10.
    Kamado S, Tsukuda M, Tokutomi I, Hirose K (1987) Keikinzoku (J Japan Inst of Light Metals) 37(11):714CrossRefGoogle Scholar
  11. 11.
    Kaya AA, Uzan P, Eliezer D, Aghion E (2000) Mater Sci Technol 16(9):1001CrossRefGoogle Scholar
  12. 12.
    Nussbaum G, Bridot P, Waner TJ, Charbonnier J, Regazzoni G (1992) In: Mordike BL, Hehmann F (eds) Magnesium alloys and their applications. DGM Informationsgesellschaft mbh, Germany, p 351Google Scholar
  13. 13.
    Wang Y, Liu G, Fan Z (2006) Acta Mater 54:689CrossRefGoogle Scholar
  14. 14.
    Japan Magnesium Institute (2000) In: Handbook of advanced magnesium technology. Kallos Publishing Co., LTD., Tokyo, p 133Google Scholar
  15. 15.
    Fujikawa S (1992) Keikinzoku (J Japan Inst of Light Metals) 42(12):826CrossRefGoogle Scholar
  16. 16.
    Bancroft CL, Cáceres CH, Davidson CJ, Griffiths JR In: Mordike BL, Kainer KU (eds) Magnesium alloys and their applications. Proceedings volume sponsored by Volkswagen AG, Werkstoff-Informationsgesellschaft mbh, Frankfurt, Germany, 1998, p 345Google Scholar
  17. 17.
    Emley EF (1966) In Principles of magnesium technology. Pergamon Press, Oxford, p 235Google Scholar
  18. 18.
    Aghion E, Bronfin B (1997) In: Lorimer GW (ed) Proceedings of the third international magnesium conference. The Institute of Materials, London, UK, p 313Google Scholar
  19. 19.
    Pettersen K, Lohne O, Ryum N (1990) Metall Trans A 21A:221CrossRefGoogle Scholar
  20. 20.
    Simensen CJ, Oberländer BC, Svalestuen J, Thorvaldsen A (1988) Z Metallkunde 79:696Google Scholar
  21. 21.
    Yoshida Y, Cisar L, Sekine T, Kamado S, Kojima Y (2004) Nippon Kinzoku Gakkai-shi 68(6):412Google Scholar
  22. 22.
    Tamura Y, Yanagisawa T, Haitani T, Tamehiro H, Kono N, Soda H, Mclean A (2007) Canadian Metallurgical Quarterly 46(4) (in press)Google Scholar
  23. 23.
    Duly D, Simon JP, Brechet Y (1995) Acta Metall Mater 43:101Google Scholar
  24. 24.
    Kida Y ( 2007) MA Eng. Thesis, Chiba Institute of Technology, JapanGoogle Scholar
  25. 25.
    Tamura Y, Kida Y, Tamehiro H, Kono N, Soda H, Mclean A (To be published)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Y. Tamura
    • 1
  • Y. Kida
    • 1
  • H. Tamehiro
    • 1
  • N. Kono
    • 1
  • H. Soda
    • 2
    Email author
  • A. McLean
    • 2
  1. 1.Department of Mechanical ScienceChiba Institute of TechnologyNarashino-shiJapan
  2. 2.Department of Materials Science and EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations