Journal of Materials Science

, Volume 43, Issue 4, pp 1241–1248 | Cite as

Influence of torsion deformation on microstructure of cold-drawn pearlitic steel wire

  • Catherine Cordier-Robert
  • Benoît Forfert
  • Bernard Bolle
  • Jean-Jacques Fundenberger
  • Albert TiduEmail author


A comparative microstructural analyse of cold-drawn pearlitic steel wires in as-drawn and after an additional torsion deformation states is presented in this paper. During torsion the temperature of the wire increases to attain 90 °C. Then the microstructure of wires is the result of different events effects, as initial drawing, temperature increase and torsion deformation. Individually or in association, both events influence the stress level and nature in ferrite and cementite lamellae, modify the kinetic of cementite decomposition and change the dislocation mobility in cementite and ferrite. Carbon atoms migration from cementite to ferrite is affected by these thermomechanical treatments inducing a modification of dislocation pinning by carbon atoms and lamellae interfaces. The phases’ determination and quantification, associated with the carbon content variation in each phase was investigated by Mössbauer spectroscopy. The evolution of the pearlitic steel wires microstructure will be discussed point-by-point, as a function of applied deformation nature.


Ferrite Cementite Pearlitic Steel Torsion Deformation Cementite Phase 



The authors acknowledge one of the referees for valuable comments.


  1. 1.
    Gavriljuk V (2002) Scripta Materialia 46(2):175CrossRefGoogle Scholar
  2. 2.
    Gavriljuk VG (2003) Mater Sci Eng A 345(1–2):81CrossRefGoogle Scholar
  3. 3.
    Maruyama N, Tarui T, Tashiro H (2002) Scripta Materialia 46(8):599CrossRefGoogle Scholar
  4. 4.
    Shabashov VA, Korshunov LG, Mukoseev AG, Sagaradze VV, Makarov AV, Pilyugin VP, Novikov SI, Vildanova NF (2003) Mater Sci Eng A 346(1–2):196CrossRefGoogle Scholar
  5. 5.
    Embury JD, Fisher RM (1966) Acta Metall 14(2):147CrossRefGoogle Scholar
  6. 6.
    Makii K, Yagushi H, Ibaraki N, Miyamoto Y, Oki Y (1997) Scripta Materialia 37:1753CrossRefGoogle Scholar
  7. 7.
    Languillaume J, Kapelski G, Baudelet B (1997) Acta Materialia 45(3):1201CrossRefGoogle Scholar
  8. 8.
    Tomota Y, Suzuki T, Kanie A, Shiota Y, Uno M, Moriai A, Minakawa N, Morii Y (2005) Acta Materialia 53(2):463CrossRefGoogle Scholar
  9. 9.
    Tomota Y, Luká P, Neov D, Harjo S, Abe YR (2003) Acta Materialia 51(3):805CrossRefGoogle Scholar
  10. 10.
    Van Acker K, Root J, Van Houtte P, Aernoudt E (1996) Acta Materialia 44(10):4039CrossRefGoogle Scholar
  11. 11.
    He S, Van Bael A, Li SY, Van Houtte P, Mei F, Sarban A (2003) Mater Sci Eng A 346(1–2):101CrossRefGoogle Scholar
  12. 12.
    Yu Zolotorevsky N, Yu Krivonosova N (1996) Mater Sci Eng A 205(1–2):239CrossRefGoogle Scholar
  13. 13.
    Liu Y, Jiang QW, Wang G, Wang YD, Tidu A, Zuo L (2005) J Mater Sci Technol 21(3):357CrossRefGoogle Scholar
  14. 14.
    Hono K, Ohnuma M, Murayama M, Nishida S, Yoshie A, Takahashi T (2001) Scripta Materialia 44(6):977CrossRefGoogle Scholar
  15. 15.
    Watté P, Van Humbeeck J, Aernoudt E, Lefever I (1996) Scripta Materialia 34(1):89CrossRefGoogle Scholar
  16. 16.
    Goes B, Martín-Meizoso A, Gil-Sevillano J, Lefever I, Aernoudt E (1998) Eng Frac Mech 60(3):255CrossRefGoogle Scholar
  17. 17.
    Cordier-Robert C, Foct J, Iost A (2000) In: Sudarshan TS, Jeandin M (eds) Proceedings of the fourteen international conference on surface modification technologies, Paris (France). ASM International, USA, p 345Google Scholar
  18. 18.
    Le Caër G, Thèse d’Etat, Ecole des Mines de Nancy (1974)Google Scholar
  19. 19.
    Song HR, Kang EG, Nam WJ (2007) Mater Sci Eng A 449–451:1147CrossRefGoogle Scholar
  20. 20.
    Zeren A, Zeren M (2003) J Mater Process Technol 141(1):86CrossRefGoogle Scholar
  21. 21.
    Read HG (1997) Scripta Materialia 37(2):151CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Catherine Cordier-Robert
    • 1
  • Benoît Forfert
    • 2
  • Bernard Bolle
    • 2
  • Jean-Jacques Fundenberger
    • 2
  • Albert Tidu
    • 3
    Email author
  1. 1.Laboratoire de Métallurgie Physique et Génie des Matériaux (LMPGM)UMR CNRS 8517, Université des Sciences et Technologies de LilleVilleneuve d’Ascq CedexFrance
  2. 2.Laboratoire d’Etude des Textures et Application aux Matériaux (LETAM)UMR CNRS 7078, Université Paul Verlaine de MetzMetz Cedex 01France
  3. 3.Laboratoire d’Etude des Textures et Application aux Matériaux (LETAM)UMR CNRS 7078, Ecole Nationale d’Ingénieurs de MetzMetz Cedex 01France

Personalised recommendations